Review of the coatings used for brake discs regarding their wear resistance and environmental effect

Author(s):  
Saša Vasiljević ◽  
Jasna Glišović ◽  
Blaža Stojanović ◽  
Aleksandar Vencl

Wear of a friction pair of brake (brake disc and pads), in addition to reducing the active safety of vehicles, leads to the formation of particles that can affect the environment and human health. In addition to the technologies that are being developed for the collection of particles created by the wear of brakes during braking process, today new materials are being introduced, as well as various technologies for processing friction pairs with the aim of reducing brake wear and thus the formation of particles. Furthermore, today, technologies for coating (cladding) the friction surfaces of disc brakes with some materials are increasingly applied and researched, in order to reduce the wear intensity (wear rate) of disc brakes, i.e. the emission of particles created by wear of friction pairs. The aim of this paper is to analyse and review different deposition techniques and materials used for brake discs coatings, as well as the effect it has on the wear rate of friction pair. There are many coating deposition techniques, and special attention is paid to the technology of laser hardfacing of brake rotors.

2012 ◽  
Vol 479-481 ◽  
pp. 202-206
Author(s):  
Wan Hua Nong ◽  
Fei Gao ◽  
Rong Fu ◽  
Xiao Ming Han

The distribution of temperature on the rubbing surface is an important factor influencing the lifetime of a brake disc. With a copper-base sintered brake pad and a forge steel disc, up-to-brake experiments have been conducted on a full-scale test bench at a highest speed of 200 Km/h and a maximum braking force of 22.5 KN. The temperature distributions on brake disc surface have been acquired by an infrared thermal camera, and the contact pressure on the contact surface of the friction pair has been calculated by the finite element software ABAQUS. The results show that the area and thermal gradient of the hot bands increase with the increase of braking speed and braking force. The hot bands occur in priority at the radial location of r=200 mm and r=300 mm, and move radially in the braking process. The finite element modelling calculation indicates that the distribution of the contact pressure on the disc surface in radial direction is in a "U"-shape. The maximum contact pressure occur at the radial locations of r=200 mm and r=300 mm, and the minimum contact pressure occur in the vicinity of the mean radius of the disc. The conformity of contact pressure distributions with the practical temperature evolutions indicates that the non-uniform distribution of the contact pressure is the factor resulting in the appearance of hot bands on the disc surface.


Tribologia ◽  
2017 ◽  
Vol 276 (6) ◽  
pp. 27-31
Author(s):  
Grzegorz KINAL ◽  
Michał LIBERA

The paper discusses the problems related to cast iron brake rotors in the context of their hardness, which is one of the fundamental mechanical properties of these components. This property fundamentally determines the resistance to the wear processes occurring at the contact of the working surface of the rotor with the brake pad. In order to ensure a proper braking process, the manufacturer must appropriately select the friction pair in terms of the hardness of the mating components and guarantee the constant hardness of each and every manufactured brake rotor. The research presented in the paper was conducted on a selected group of brake rotors. The average hardness of the investigated group of a given type and given manufacturer was ascertained by calculating the spread of the hardness results and checking whether the differences (and what type of differences) occur for newly manufactured and retailed rotors.


2017 ◽  
Vol 17 (3) ◽  
pp. 125-134 ◽  
Author(s):  
Wojciech Sawczuk

AbstractDue to their wide range of friction characteristics resulting from the application of different friction materials and good heat dissipation conditions, railway disc brakes have long replaced block brakes in many rail vehicles. A block brake still remains in use, however, in low speed cargo trains. The paper presents the assessment of the braking process through the analysis of vibrations generated by the components of the brake system during braking. It presents a possibility of a wider application of vibroacoustic diagnostics (VA), which aside from the assessment of technical conditions (wear of brake pads) also enables the determination of the changes of the average friction coefficient as a function of the braking onset speed. Vibration signals of XYZ were measured and analyzed. The analysis of the results has shown that there is a relation between the values of the point measures and the wear of the brake pads.


2013 ◽  
Vol 756-759 ◽  
pp. 4331-4335 ◽  
Author(s):  
Jian Zhang ◽  
Chang Gao Xia

According to the real dimension of the braking disc, the finite element modeling for three-dimensional transient cyclic symmetry during the long downhill braking is established. The distribution of the transient temperature field of the brake disc during the braking are analyzed. The variation of the friction factor combined with the temperature characteristics of the friction factor during the braking are analyzed. The analysis result show: During the braking, the temperature of the brake rises increasingly and reaches the top temperature of 316.04°C at the end of braking process, the high temperature section concentrates in the far area of the friction surface; The changes of the friction factor is relatively stable during the long downhill braking. There is no obvious thermal recession. (Abstract)


2007 ◽  
Vol 345-346 ◽  
pp. 697-700 ◽  
Author(s):  
Gérard Degallaix ◽  
Philippe Dufrénoy ◽  
Jonathan Wong ◽  
Paul Wicker ◽  
Frédéric Bumbieler

The CRISFIS project (supported by ADEME agency) consists in jointly studying the squealing and cracking aspects of the high power disc brakes for TGV very high speed trains. This paper deals with the progress concerning the cracking part. An experimental and modelling strategy is adopted in order to better understand and predict brake disc cracking. Braking tests conducted on an industrial scale-one test bench are presented. In a first step, the influence of the pad-type on the thermal loading applied to the disc is studied by means of an infrared camera and thermocouples embedded in the pads and in the disc. In a second step, the thermal maps extracted from thermographic monitoring are used as input data for thermal-mechanical calculations. Finally, the results of modelling and tests are compared to the damage observed on the brake discs.


Tribologia ◽  
2018 ◽  
Vol 278 (2) ◽  
pp. 111-116
Author(s):  
Andrzej POSMYK ◽  
Mateusz JEZUSEK

In many big cities, for example, Silesia Conurbation, in order to limit the negative results of automotive vehicles operation, toll bicycle rental stations have been actuated. Their users are incidental persons. Therefore, the safety of a traffic participant on bicycle ways and on areas with bicycle traffic depends on the sufficiency of braking systems. In the bicycle industry, there are many of types of brake systems from mechanical to hydraulic. A common part of the brake systems is a friction contact. In this paper, the results of tribological examination of materials used for bicycle brakes have been presented. Tribological investigation (coefficient of friction, wear rate) of classic (the oldest) rubber pad/AW-6061 alloy wheel band, composite with thermoplastic matrix/steel and AW-6061 alloy wheel band as well as friction composite with duroplastic matrix/steel brake disc contacts have been conducted. Microscopic observations of examined materials surfaces have been done and the wear mechanisms have been explained. A preliminary estimation of the influence of used materials on the safety of a traffic participant has been done.


2017 ◽  
Vol 37 (3) ◽  
pp. 102-114 ◽  
Author(s):  
Ricardo A. García-León ◽  
Eder Flórez-Solano

The braking system of a car must meet several requirements, among which safety is the most important. It is also composed of a set of mechanical parts such as springs, different types of materials (Metallic and Non Metallic), gases and liquids. The brakes must work safely and predictably in all circumstances, which means having a stable level of friction, in any condition of temperature, humidity and salinity of the environment. For a correct design and operation of brake discs, it is necessary to consider different aspects, such as geometry, type of material, mechanical strength, maximum temperature, thermal deformation, cracking resistance, among others. Therefore, the main objective of this work is to analyze the dynamics and kinetics of the brake system from the pedal as the beginning of mathematical calculations to simulate the behavior and Analysis of Finite Elements (FEA), with the help of SolidWorks Simulation Software. The results show that the third brake disc works best in relation to the other two discs in their different working conditions such as speed and displacement in braking, concluding that depending on the geometry of the brake and the cooling channels these systems can be optimized that are of great importance for the automotive industry.


2012 ◽  
Vol 619 ◽  
pp. 188-194
Author(s):  
Xiao Fei Li ◽  
Wen Bo Ni ◽  
Xue Mei Wang

Analyzing thermal load of friction pair of the disc brakes was not only an indispensable part but also a key theoretical basis for choosing materials of friction pair. In this paper, a brake disc of a mining dump truck with 220t loads was researched. In accordance with the brake test requirements of ISO3450-1996 standard, the finite element model was built using ANSYS software and then the transient simulation analysis of the temperature field for the brake disc was conducted. Finally the temperature distribution and its variation of the brake disc were analyzed in detail based on the simulation results.


Author(s):  
C. Baron Saiz ◽  
T. Ingrassia ◽  
V. Nigrelli ◽  
V. Ricotta

During the braking phase, the heat produced by friction between pads and disc cannot be entirely dissipated. Consequently, the brake disc, especially if very hard braking occur, can accumulate large amounts of heat in a short time so producing high gradients of temperature on it. Under these conditions, functionality and safety of the brake system can be compromised. The object of this study is to investigate, under extreme working conditions, the thermomechanical behaviour of different brake rotors in order to evaluate their efficiency and stability and to identify any compromising weakness on them. In particular, by means of FEM thermo-mechanical coupled analyses, one full disc and three ventilated rotors with different shapes have been studied. A very hard (fading) test has been used to evaluate the performances of the discs in terms of temperature distribution, stresses and strains. Obtained results demonstrate that the analysed ventilated discs, unlike the full rotor, can be effectively used in very hard working conditions, always ensuring high safety levels. Among the studied rotors, the curved-vanes disc was found to be the best solution.


2020 ◽  
Author(s):  
Junsheng Qu ◽  
Wenjing Wang ◽  
Ziyu Dong

Abstract During the braking process, a large amount of heat energy is generated at the friction surfaces between the brake disc and pads and rapidly dissipates into the disc volume. In this paper, a three-dimensional thermo-mechanical coupling model of high-speed wheel-mounted brake discs containing bolted joints and contact relationships is established. The direct coupling method is used to analyse the temperature and stress of the brake discs during an emergency braking event with an initial speed of 300 km/h. A full-scale bench test is also conducted to monitor the temperatures of the friction ring and bolted joints. The simulation result shows that the surface temperature of the friction ring reaches its peak value of 413.7°C after 102 s of braking, which agrees well with the bench test result. The maximum alternating thermal stress occurs in the bolt hole where the maximum circumferential compressive stress is -658 MPa and the maximum circumferential tensile stress is 134 MPa. During the braking process, the out-of-plane deformation of the middle part of the friction ring is larger than that of the edge, which increases the axial tensile load of the connecting bolt. This work provides support for the design of brake discs and connecting bolts.


Sign in / Sign up

Export Citation Format

Share Document