Differential effects of interferon-ß1b on cytokine patterns of CD4+ and CD8+ T cells derived from RRMS and PPMS patients

2011 ◽  
Vol 18 (5) ◽  
pp. 674-678 ◽  
Author(s):  
Sabine Skrzipek ◽  
Antje Vogelgesang ◽  
Barbara M Bröker ◽  
Alexander Dressel

The influence of interferon (IFN)-β on cytokine release by immune cells remains controversial. This study compared IFN-β1b effects on mononuclear cells, CD4+ and CD8+ T cells derived from healthy controls and relapsing–remitting multiple sclerosis (RRMS) and primary progressive multiple sclerosis (PPMS) patients. Effects of IFN-β1b (0-10,000 U/ml) on cytokine release were determined in cell culture. IFN-β1b inhibited IFN-γ and induced interleukin (IL)-4 selectively in RRMS-derived CD4+ T cells. IL-10 was significantly induced in all cell populations from RRMS but only marginally in PPMS. IL-5 was always inhibited; IL-17A remained unaltered. These in vitro data parallel clinical observations that IFN-β is most effective in RRMS.

2013 ◽  
Vol 19 (14) ◽  
pp. 1867-1877 ◽  
Author(s):  
Que Lan Quach ◽  
Luanne M Metz ◽  
Jenna C Thomas ◽  
Jonathan B Rothbard ◽  
Lawrence Steinman ◽  
...  

Background: Suppression of activation of pathogenic CD4+ T cells is a potential therapeutic intervention in multiple sclerosis (MS). We previously showed that a small heat shock protein, CRYAB, reduced T cell proliferation, pro-inflammatory cytokine production and clinical signs of experimental allergic encephalomyelitis, a model of MS. Objective: We assessed whether the ability of CRYAB to reduce the activation of T cells translated to the human disease. Methods: CD4+ T cells from healthy controls and volunteers with MS were activated in vitro in the presence or absence of a CRYAB peptide (residues 73–92). Parameters of activation (proliferation rate, cytokine secretion) and tolerance (anergy, activation-induced cell death, microRNAs) were evaluated. Results: The secretion of pro-inflammatory cytokines by CD4+ T cells was decreased in the presence of CRYAB in a subset of relapsing–remitting multiple sclerosis (RRMS) participants with mild disease severity while no changes were observed in healthy controls. Further, there was a correlation for higher levels of miR181a microRNA, a marker upregulated in tolerant CD8+ T cells, in CD4+ T cells of MS patients that displayed suppressed cytokine production (responders). Conclusion: CRYAB may be capable of suppressing the activation of CD4+ T cells from a subset of RRMS patients who appear to have less disability but similar age and disease duration.


2017 ◽  
Vol 653 ◽  
pp. 159-162 ◽  
Author(s):  
Sabrina Giacoppo ◽  
Oxana Bereshchenko ◽  
Stefano Bruscoli ◽  
Carlo Riccardi ◽  
Placido Bramanti ◽  
...  

2020 ◽  
Vol 8 ◽  
pp. 2050313X2091961
Author(s):  
Laura D Chin ◽  
Mohn’d AbuHilal

Background: Ocrelizumab is a humanized monoclonal antibody that targets the CD20 antigen found on B-cells. It is indicated in the treatment of both relapsing–remitting multiple sclerosis and primary progressive multiple sclerosis. Objective: The aim of this study is to report and describe the characteristics of alopecia areata following treatment with ocrelizumab for multiple sclerosis. Results: Five patients were reported, two female and three male. Four of the five patients had alopecia areata of the scalp, one of the five having alopecia to the beard area. All patients responded well to conventional treatment with topical and intralesional corticosteroids and topical minoxidil foam. Ocrelizumab can be associated with the development of alopecia areata. Initiation of proper treatment may lead to quick improvement or resolution of this potentially reversible adverse effect.


2013 ◽  
Vol 19 (11) ◽  
pp. 1428-1436 ◽  
Author(s):  
Giancarlo Comi

The last 20 years have seen major progress in the treatment of relapsing–remitting multiple sclerosis (RRMS) using a variety of drugs targeting immune dysfunction. In contrast, all clinical trials of such agents in primary progressive multiple sclerosis (PPMS) have failed and there is limited evidence of their efficacy in secondary progressive disease. Evolving concepts of the complex interplay between inflammatory and neurodegenerative processes across the course of multiple sclerosis (MS) may explain this discrepancy. This paper will provide an up-to-date overview of the rationale and results of the published clinical trials that have sought to alter the trajectory of both primary and secondary MS, considering studies involving drugs with a primary immune target and also those aiming for neuroprotection. Future areas of study will be discussed, building on these results combined with the experience of treating RRMS and new concepts emerging from laboratory science and animal models.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 162-162
Author(s):  
Emmanuel S. Antonarakis ◽  
David I. Quinn ◽  
Adam S. Kibel ◽  
Daniel Peter Petrylak ◽  
Tuyen Vu ◽  
...  

162 Background: Sip-T is an FDA-approved immunotherapy for patients (pts) with asymptomatic or minimally symptomatic metastatic CRPC. Sip-T is manufactured from autologous peripheral blood mononuclear cells cultured with the immunogen PA2024, a fusion antigen of prostatic acid phosphatase (PAP) conjugated to granulocyte macrophage colony-stimulating factor. After sip-T, antibody and T cell responses to PA2024 and/or PAP correlate with improved survival. To further elucidate the mechanism of sip-T–induced immune responses, we evaluated the proliferative and lytic ability of PA2024- and PAP-specific CD8+ T cells. Methods: Mononuclear blood cells were labeled with the membrane dye carboxyfluorescein succinimidyl ester (CFSE) and cultured with PA2024 or PAP. In vitro proliferative and lytic CD8+ (cytotoxic T lymphocyte [CTL]) T cell responses to these antigens were evaluated by flow cytometry. For proliferation, progressive dilution of CFSE was measured. For CTL activity, the loss of intracellular granzyme B (GzB), indicating exocytosis of this apoptosis-mediating enzyme, was assessed. Samples were from 2 sip-T clinical trials STAND (NCT01431391) and STRIDE (NCT01981122), hormone-sensitive and CRPC pts, respectively. Results: Six wk after sip-T administration, CD8+ PAP- and PA2024-specific responses were observed (n=14 pts assessed). The magnitude of PA2024-specific CD8+ proliferative responses was greater than that for PAP-specific responses. CD8+ T cells from a subset of pts who exhibited PA2024- and/or PAP-specific proliferative responses were assessed for lytic ability. After in vitro antigen stimulation, CTL activity in all evaluated samples (n=14, PA2024; n=13, PAP) was demonstrated by a significant decrease (p<0.05) in intracellular GzB relative to a no-antigen control. Conclusions: Sip-T induced CD8+ CTL proliferation against the target antigens PAP and PA2024. Moreover, antigen-specific CTL activity provides the first direct evidence that sip-T can induce tumor cell lysis. These antigen-specific CD8+ lytic abilities were observed within 6 wk following sip-T, suggesting rapidly generated immune responses. Clinical trial information: NCT01431391; NCT01981122.


2004 ◽  
Vol 146 (1-2) ◽  
pp. 189-198 ◽  
Author(s):  
Arnon Karni ◽  
Konstantin Balashov ◽  
Wayne W. Hancock ◽  
Padmanabhan Bharanidharan ◽  
Michal Abraham ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Takahiro Teshima ◽  
Yunosuke Yuchi ◽  
Ryohei Suzuki ◽  
Hirotaka Matsumoto ◽  
Hidekazu Koyama

Adipose tissue-derived mesenchymal stem cells (ADSCs) have anti-inflammatory and immunomodulatory characteristics. Many studies have suggested that the immunomodulation of ADSCs is largely mediated by secreted paracrine factors. Various factors are secreted from ADSCs, among which extracellular vesicles are considered to play a major role in the communication between ADSCs and target cells. Several studies have reported the function of canine ADSC-derived extracellular vesicles (cADSC-EVs), but few studies have reported the immunomodulatory effects of cADSC-EVs on immune cells. The purpose of this study was to investigate the effects of cADSC-EVs on in vitro-stimulated CD4+ T cells isolated from peripheral blood mononuclear cells (PBMCs). cADSC-EVs were isolated from cADSCs under naive conditions or primed conditions by tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ). The expression levels of several microRNAs in cADSC-EVs were altered by priming with TNFα and IFNγ. Culturing PBMCs stimulated with concanavalin A in the presence of naive or primed cADSC-EVs inhibited the differentiation of PBMCs and CD4+ T cells and promoted apoptosis of PBMCs. CD4+, CD8+, and CD4+CD8+ T cells were decreased, while CD3+CD4-CD8- T cells were increased. T helper (Th) 1, Th2, Th17, and regulatory T (Treg) cells were analyzed by flow cytometry. cADSC-EVs inhibited the proliferation of Th1 and Th17 cells and enhanced Th2 and Treg cell proliferation. However, CD4+ T cells that had incorporated labeled cADSC-EVs comprised only a few percent of all cells. Therefore, these responses of stimulated CD4+ T cells may be due to not only direct effects of cADSC-EVs but also to indirect effects through interactions between cADSC-EVs and other immune cells. In conclusion, cADSC-EVs exert immunosuppressive effects on stimulated CD4+ T cells in vitro. These findings may be useful for further studies of immune diseases.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3605-3605 ◽  
Author(s):  
Haitham Abdelhakim ◽  
Luis M. Cortez ◽  
Meizhang Li ◽  
Mitchell Braun ◽  
Barry S. Skikne ◽  
...  

Background: Acute Myeloid Leukemia (AML) is an aggressive hematologic malignancy with known immune dyregulation. In addition to their capacity to rapidly divide, AML cells directly inhibit the activation and proliferation of immune cells in culture. Immunosuppressive features observed in the bone marrow of AML patients include upregulation of Tregs and production of immunosuppressive cytokines (e.g., TGFβ). Irradiating AML cells diminishes their immunosuppressive capacity while maintaining antigen presentation, leading to increased activation of T cells in co-culture. We subsequently identified the immune checkpoint LAG3 as an important mediator of AML-induced immunosuppression and LAG3 modulation as potential treatment strategy. Methods: Normal PBMC were isolated from healthy donors. PBMC were co-cultured with non-irradiated and irradiated (40 Gy) human AML cell lines (Kasumi1 (K1), THP1) separately at a 1:2 ratio. On day 3 of co-culture, immunophenotypic characterization of T cells was performed on a flow cytometer using the following surface markers: CD3, CD4, CD8, CD25, CD137, CD154, PD-1, TIM3, TIGIT, and LAG3 and intracellular IFNg and FOXP3. Supernatant from co-culture media were analyzed for cytokine (IL-2, IL-6, IL-10 & TGFβ) secretion by ELISA. CFSE-labeled AML cells were incubated with healthy donor PBMCs in the presence or absence of LAG3, then viability was measured by 7-ADD on flow cytometry. PBMCs were also isolated from AML patients' peripheral blood and mononuclear cells were isolated from their respective bone marrow samples. Primary AML cultures were established in RPMI complete media with 20% FBS. CFSE-7-ADD killing assay was conducted after incubation of AML cells with autologous PBMCs. Results: Healthy donor PBMC co-cultured with irradiated K1 AML cells showed higher intracellular IFNg expression (11.8% ± 3.1 v. 7% ± 3.3; n=7, P=0.012) and higher CD137 expression (9.3% ± 1.21 v. 5.7% ± 3.4; n=7, P&lt;0.001) on CD8+ T cells, and higher CD154 expression on CD4+ cells (44.7% ± 20.3 v. 26.3% ± 14.2; n=5, P=0.002) when compared to the non-irradiated K1-PBMC co-cultures. There were fewer Tregs (CD4+ CD25+ FOXP3+) in the PBMC co-cultured with irradiated K1 cells (1.96% ± 0.37 v. 3.39% ± 0.58; n=4, P=0.03) compared to the non-irradiated K1-PBMC co-cultures. LAG3 expression on CD8+ T cells co-cultured with irradiated K1 was decreased (11.8% ± 2.4 v. 17.5% ± 2.5; n=4, P=0.002) compared to the PBMC co-cultured with non-irradiated K1 cells. No other changes in checkpoint expression on CD8+ T cells were observed. No changes were observed in MHCI or PDL1 expression on non-irradiated K1 AML cells before or after co-culture with PBMC. We observed similar findings with healthy donor PBMC co-cultured with a different AML cell line, THP1; CD137 expression was higher on CD8+ T cells (17.6% v. 6.5%; P=0.02, n=3). ELISA of the supernatant of culture media showed higher mean OD for secreted TGFβ in the non-irradiated AML co-cultures compared to the irradiated AML co-cultures at 6 hours (2.5 v. 2.0, P=0.03, n=3) and 72 hours (7.9 v. 5.3, P=0.04, n=3). Adding anti-LAG3 antibody (3DS223H; 100 µg/ml) to PBMC co-cultured with non-irradiated AML cells resulted in higher IFNg (16.3% v. 6.6%, P=0.01, n=4) and CD137 expression (6.5% v. 4.1%, p=.007, n=4) on CD8+ cells and fewer Tregs (1.7% v. 3.8%, P=.04, n=4) compared to no antibody added. Healthy donor PBMC (n=3) were incubated with CFSE labeled AML cells (K1 and THP1) separately at an effector:target ratio of 5:1. The addition of anti-LAG3 antibody lead to increased killing of both K1 and THP1 AML cells at 4 and 24 hours (Figure 1A). To eliminate the HLA mismatch effect, we incubated PBMC from AML patients with autologous AML cells in the presence or absence of anti-LAG3 (Figure 1B). MHC-I blocking (W6/32, 30 µg/ml) lead to inhibition of cell mediated killing in the presence of anti-LAG3 (Figure 1B). Conclusion: In this in vitro model, AML cells showed immunosuppressive features with decreased activation of CD8+ T cells, upregulation of Tregs, increased secretion of TGFβ and higher expression of LAG3 on CD8+ T cells. Antibody blocking of LAG3 mitigated this effect, resulting in increased activation of T cells, fewer T regs and improved MHC-I-mediated killing against AML cells. These results demonstrate that the immunosuppressive effects of AML cells can be modulated through inhibition of LAG-3, suggesting a potential strategy for future combination therapy in AML. Disclosures Lin: Jazz Pharmaceuticals: Honoraria; Pfizer: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document