Development of stiffness-adjustable tuned mass dampers for frequency retuning

2018 ◽  
Vol 22 (2) ◽  
pp. 473-485 ◽  
Author(s):  
Zhihao Wang ◽  
Hui Gao ◽  
Hao Wang ◽  
Zhengqing Chen

Tuned mass damper is an attractive strategy to mitigate the vibration of civil engineering structures. However, the performance of a tuned mass damper may show a significant loss due to the frequency detuning effect. Hence, an inerter-induced negative stiffness (apparent mass effect) and magnetic-force-induced positive/negative stiffness are proposed to integrate a stiffness-adjustable vertical tuned mass damper and pendulum tuned mass damper for frequency retuning, respectively. Based on the established differential equations of motion for a vertical tuned mass damper coupled with an inerter and a pendulum tuned mass damper integrated with a magnetic-force-induced positive-/negative-stiffness device, the frequency retuning principles of a vertical tuned mass damper and a pendulum tuned mass damper are, respectively, demonstrated. The frequency retuning strategies for both the vertical tuned mass damper and the pendulum tuned mass damper are confirmed and clarified by model tests. Furthermore, the performance of a retuned vertical tuned mass damper for mitigating vibration of a linear undamped single-degree-of-freedom primary structure is discussed, and the effects of the amplitudes of the pendulum tuned mass damper on magnetic-force-induced stiffness as well as the frequency of the pendulum tuned mass damper are also investigated. Both theoretical analysis and experimental investigations show that the proposed frequency tuning methodologies of tuned mass dampers are efficient and cost-effective with relatively simple configurations.

2006 ◽  
Vol 06 (04) ◽  
pp. 541-557 ◽  
Author(s):  
CHUNXIANG LI

The dual-layer multiple tuned mass dampers (DL-MTMD) with a uniform distribution of natural frequencies are proposed, which consist of one large tuned mass damper (L-TMD) and an arbitrary number of small tuned mass dampers (S-TMD). The structure is represented by a generalized system corresponding to the specific vibration mode to be controlled. The criterion for assessing the optimum parameters and effectiveness of the DL-MTMD is based on the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure installed with the DL-MTMD. Also considered is the stroke of the DL-MTMD. The proposed DL-MTMD system is demonstrated to show higher effectiveness and robustness to the change in frequency tuning, in comparison to the multiple tuned mass dampers (MTMD) with equal total mass ratios. It is also demonstrated to be more effective than the dual tuned mass dampers (DTMD) with one large and one small tuned mass damper, but they maintain the same level of robustness to the change in frequency tuning. The DL-MTMD system can be easily manufactured as the optimum value for the linking dashpots between the structure and L-TMD is shown to be zero.


2011 ◽  
Vol 17 (4) ◽  
pp. 540-557 ◽  
Author(s):  
Veeranagouda B. Patil ◽  
Radhey Shyam Jangid

The performance of multiple tuned mass dampers (MTMD) installed at the top floor of the wind excited benchmark building under across wind loads is investigated. The performance of MTMD is compared with that of single tuned mass damper (TMD) having same total mass. The governing equations of motion of the building with MTMD/ TMD are solved by employing state space formulation. Initially, the TMD is installed at the top floor of the benchmark building and the optimum parameters of the damper for the minimization of various performance criteria of the building are obtained for different mass ratios. Later on, the MTMD is installed at the top floor of the building and the optimum parameters are obtained for the minimization of various performance criteria of the building for different mass ratios and number of dampers. As it is easier to maintain the same stiffness of dampers, the stiffness of each damper in MTMD is maintained as constant. From the study, it is found that the MTMDs are quite effective and robust in the vibration control of the benchmark building. Santrauka Straipsnyje tiriamas kelių masės slopintuvų (KMS), įrengtų aukštybinio pastato, kurį veikia vėjo apkrovos, viršutiniame aukšte, poveikis konstrukcijai. Šis KMS poveikis lyginamas su vieno masės slopintuvo (VMS) poveikiu, teigiant, kad abiem atvejais suminės masės reikšmė yra ta pati. Pagal KMS ir VMS sudarytos judėjimo lygtys išspręstos pritaikius erdvinio būvio formuluotę. Iš pradžių VMS įrengiamas viršutiniame pastato aukšte ir šiam atvejui suskaičiuojami optimalus slopintuvo parametrai, minimizuojant įvairius darbo kriterijus ir įvertinant skirtingus masės koeficientus. Po to KMS įrengiami viršutiniame pastato aukšte ir optimalūs parametrai apskaičiuojami šiam atvejui, įvertinant skirtingus masės koeficientus ir skirtingą slopintuvų skaičių. Kiekvieno slopintuvo standumas KMS atveju nekinta. Daroma išvada, kad KMS įrengimas – gana efektyvi ir veiksminga priemonė siekiant išvengti vibracijų aukštybiniuose pastatuose.


Tuned mass dampers (TMD) are one of the most reliable devices to control the vibration of the structure. The optimum mass ratio required for a single tuned mass damper (STMD) is evaluated corresponding to the fundamental natural frequency of the structure. The effect of STMD and Multiple tuned mass dampers (MTMD) on a G+20 storey structure are studied to demonstrate the damper’s effectiveness in seismic application. The location and number of tuned mass dampers are studied to give best structural performance in maximum reduction of seismic response for El Centro earthquake data. The analysis results from SAP 2000 software tool shows damper weighing 2.5% of the total weight of the structure effectively reduce the response of the structure. Study shows that introduction of 4-MTMD at top storey can effectively reduce the response by 10% more in comparison to single tuned mass damper. The use of MTMD of same mass ratio that of STMD is more effective in seismic response.


Author(s):  
Mohammad Aghajani Delavar

In this paper, optimum parameters of Tuned Mass Dampers (TMD) are considered to control the responses of 10-story shear building under harmonic loading and 22 set of seismic records of FEMA-P695. The criterion used to obtain the optimum parameters is to select mass ratio, the frequency (tuning) and damping ratio that would result in smallest lateral displacements. State-space equations of motion are presented to compute the structural responses by developing a MATLAB file. A 10-story shear building is presented as a case study to assess the effects of TMDs on the multi-story structures. The results indicate that using TMD can reduce structural responses up to the average 20% under earthquake excitation and up to 90% under harmonic loadings. TMDs are not always effective under any type of ground motion; therefore, being aware of the given location is significant to design TMDs properly.


2016 ◽  
Vol 20 (9) ◽  
pp. 1375-1389 ◽  
Author(s):  
Mohammad Sabbir Rahman ◽  
Md Kamrul Hassan ◽  
Seongkyu Chang ◽  
Dookie Kim

The primary objective of this research is to find the effectiveness of an adaptive multiple tuned mass damper distributed along with the story height to control the seismic response of the structure. The seismic performance of a 10-story building was investigated, which proved the efficiency of the adaptive multiple tuned mass damper. Structures with single tuned mass damper and multiple tuned mass dampers were also modeled considering the location of the dampers at the top of the structure, whereas adaptive multiple tuned mass damper of the structure was modeled based on the story height. Selection of the location of the adaptive multiple tuned mass damper along with the story height was dominated by the modal parameters. Participation of modal mass directly controlled the number of the modes to be considered. To set the stage, a comparative study on the displacements and modal energies of the structures under the El-Centro, California, and North-Ridge earthquakes was conducted with and without various types of tuned mass dampers. The result shows a significant capability of the proposed adaptive multiple tuned mass damper as an alternative tool to reduce the earthquake responses of multi-story buildings.


Author(s):  
Semen Kopylov ◽  
Zhaobo Chen ◽  
Mohamed AA Abdelkareem

Implementation of tuned mass dampers is the commonly used approach to avoid excessive vibrations in civil engineering. However, due to the absence of the compact dimension, there are still no practical applications of the tuned mass dampers in automotive industry. Meanwhile, recent investigations showed the benefit of utilizing a tuned mass damper in a vehicle suspension in terms of driving comfort and road holding. Thus, the current investigation aimed to explore a novel compact dimension tuned mass damper, which can provide both sufficient vibration mitigation and energy harvesting. This paper presents a prototype of a back-iron-based design of an electromagnetic regenerative tuned mass damper. The mathematical model of the tuned mass damper system was developed and has been validated by the experimental results of the tuned mass damper prototype implemented in a protected mass test-bench. The indicated results concluded that the attenuation performance dramatically deteriorated under random excitations and a reduction in the root-mean-square acceleration of 18% is concluded compared to the case with undamped tuned mass damper. Under harmonic excitations, the designed tuned mass damper prototype is able to reduce the peak acceleration value of the protected structure by 79%. According to the experimental results, the designed tuned mass damper prototype revealed a peak regenerative power of 0.76 W under a harmonic excitation of 8.1 Hz frequency [Formula: see text]m amplitude. Given the simulated random road profiles from C to E, the back-iron electromagnetic tuned mass damper indicated that root-mean-square harvested power from 0.6 to 6.4 W, respectively.


2020 ◽  
Vol 26 (9-10) ◽  
pp. 646-658
Author(s):  
Lu-yu Li ◽  
Tianjiao Zhang

A tuned mass damper is a passive control device that has been widely used in aerospace, mechanical, and civil engineering as well as many other fields. Tuned mass dampers have been studied and improved over the course of many years. In practical engineering applications, a tuned mass damper inevitably produces some nonlinear characteristics due to the large displacement and the use of the limiting devices, but this nonlinearity is often neglected. The simulation results in this study confirm that neglecting the nonlinearity in the design process can produce adverse effects on the control performance. This paper takes into account the nonlinearity of the tuned mass damper produced in the process of vibration and deduces an optimum formula for the frequency of a tuned mass damper by the complexification averaging method and multiscale method. Based on this formula, a modified design method for the frequency of a tuned mass damper is presented. The numerical results show that the nonlinear tuned mass damper after modification is better than a linear tuned mass damper in terms of control performance.


2017 ◽  
Vol 17 (04) ◽  
pp. 1750047 ◽  
Author(s):  
Yi-Ren Wang ◽  
Li-Ping Wu

This paper studies the vibration of a nonlinear 3D-string fixed at both ends and supported by a nonlinear elastic foundation. Newton’s second law is adopted to derive the equations of motion for the string resting on an elastic foundation. Then, the method of multiple scales (MOMS) is employed for the analysis of the nonlinear system. It was found that 1:3 internal resonance exists in the first and fourth modes of the string when the wave speed in the transverse direction is [Formula: see text] and the elasticity coefficient of the foundation is [Formula: see text]. Fixed point plots are used to obtain the frequency responses of the various modes and to identify internal resonance through observation of the amplitudes and mode shapes. To prevent internal resonance and reduce vibration, a tuned mass damper (TMD) is applied to the string. The effects of various TMD masses, locations, damper coefficients ([Formula: see text]), and spring constants ([Formula: see text]) on overall damping were analyzed. The 3D plots of the maximum amplitude (3D POMAs) and 3D maximum amplitude contour plots (3D MACPs) are generated for the various modes to illustrate the amplitudes of the string, while identifying the optimal TMD parameters for vibration reduction. The results were verified numerically. It was concluded that better damping effects can be achieved using a TMD mass ratio [Formula: see text]–0.5 located near the middle of the string. Furthermore, for damper coefficient [Formula: see text], the use of spring constant [Formula: see text]–13 can improve the overall damping.


Sign in / Sign up

Export Citation Format

Share Document