Study on the ignitability of a high-pressure direct-injected methane jet using a diesel pilot, a glow-plug, and a pre-chamber

2021 ◽  
pp. 146808742110481
Author(s):  
Walter Vera-Tudela ◽  
Bruno Schneider ◽  
Silas Wüthrich ◽  
Kai Herrmann

Natural gas is a promising alternative fuel for internal combustion engines, it allows for a reduction of engine-out emissions without impairing high engine efficiencies. Although this approach is already utilized from small to large engine classes, it is almost exclusively based on the combustion of a premixed, homogeneous charge. For ignition, small engines use standard spark-plugs or pre-chambers, while large and lean-operated engines use pre-chambers and pilot injections. Direct high-pressure gas injection is a more recent, alternative way to operate gas engines which offers benefits compared to premixed operation such as high compression ratio, high combustion pressures, lean operation, quantity regulation, among others. However, in contrast to diesel direct injection, the compression temperatures are too low for the auto-ignition of the gas jets. Therefore, an additional ignition system is required, usually a pilot injection system is used. In this study, the usability and performance of three ignition strategies for direct injected high-pressure gas jets have been investigated in an optically accessible test-rig that is able to operate at engine-like conditions. The first type of ignition system is a pilot injection with a liquid fuel, the second is a glow-plug located near the main gas jet, and the third system is a pre-chamber with a nozzle hole aimed at the main gas jet. Results show that all three strategies are feasible options under the studied conditions. Ignition by a pilot fuel injection is a safe and reliable way to ignite the main fuel. The glow-plug is less reliable and leads to high cycle-to-cycle variation. The best option in the present study is the pre-chamber, it is very reliable, delivers the highest peak cylinder pressure and exhibits the lowest cyclic variability. The good performance is attributed to the intense mixing of the main gas jet with the hot jet exiting the pre-chamber.

Author(s):  
Adam B. Dempsey ◽  
Scott Curran ◽  
Robert Wagner ◽  
William Cannella

Gasoline compression ignition (GCI) concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multicylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies have been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection (DI) strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from −91 deg to −324 deg ATDC, which is just after the exhaust valve closes (EVCs) for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 l diesel engine with a variable geometry turbocharger (VGT), high pressure common rail injection system, wide included angle injectors, and variable swirl actuations was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection pressures. The gasoline used in this study has relatively high fuel reactivity with a research octane number of 68. The results of this experimental campaign indicate that the highest brake thermal efficiency (BTE) and lowest emissions are achieved simultaneously with the earliest pilot injection timings (i.e., during the intake stroke).


Author(s):  
Adam Dempsey ◽  
Scott Curran ◽  
Robert Wagner ◽  
William Cannella

Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from −91° to −324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection pressures. The gasoline used in this study has relatively high fuel reactivity with a research octane number of 68. The results of this experimental campaign indicate that the highest brake thermal efficiency and lowest emissions are achieved simultaneously with the earliest pilot injection timings (i.e., during the intake stroke).


Author(s):  
Riccardo Scarcelli ◽  
Alan L. Kastengren ◽  
Christopher F. Powell ◽  
Thomas Wallner ◽  
Nicholas S. Matthias

While the transportation field is mostly characterized by the use of liquid fuels, gaseous fuels like hydrogen and natural gas have shown high thermal efficiency and low exhaust emissions when used in internal combustion engines (ICEs). In particular, high-pressure direct injection of a gaseous fuel within the cylinder overcomes the loss of volumetric efficiency and allows stratifying the mixture around the spark plug at the ignition time. Direct injection and mixture stratification can extend the lean flammability limit and improve efficiency and emissions of ICEs. Compared to liquid sprays, the phenomena involved in the evolution of gaseous jets are less complex to understand and model. Nevertheless, the numerical simulation of a high-pressure gas jet is not a simple task. At high injection pressure, immediately downstream of the nozzle exit the flow is supersonic, the gas is under-expanded, and a large series of shocks occurs due to the effect of compressibility. To simulate and capture these phenomena, grid resolution, computational time-step, discretization scheme, and turbulence model need to be properly set. The research group on hydrogen ICEs at Argonne National Laboratory has been extensively working on validating numerical results on gaseous direct injection and mixture formation against PIV and PLIF data from an optically accessible engine. While a good general agreement was observed, simulations still could not perfectly predict the mixing of fuel with the surrounding air, which sometimes led to significant under-prediction of fuel dispersion. The challenge is to correctly describe the gas dynamic phenomena of under-expanded gas jets. To this aim, x-ray radiography was performed at the Advanced Photon Source (APS) at Argonne to provide high-detail data of the mass distribution within a high-pressure gas jet, with the main focus on the under-expanded region. In this paper, the numerical simulation of high-pressure (100 bar) injection of argon in a cylindrical chamber is performed using the computational fluid dynamic (CFD) solver Fluent. Numerical results of jet penetration and mass distribution are compared with x-ray data. The simplest nozzle geometry, consisting of one hole with a diameter of 1 mm directed along the injector axis, is chosen as a canonical case for modeling validation. A sector (90°) mesh, with high resolution in the under-expanded region, is used and the assumption of symmetry is made. Results show good agreement between CFD and x-ray data. Gas dynamics and mass distribution within the jet are well predicted by numerical simulations.


2017 ◽  
Vol 18 (10) ◽  
pp. 1035-1054 ◽  
Author(s):  
Kang Pan ◽  
James S Wallace

This article presents the results of computational studies investigating the ignition of high-pressure natural gas jets in a compression-ignition engine with glow plug ignition assist. The simulation was conducted using a KIVA-3V-based three-dimensional engine model, along with an improved fuel injector model, a detailed cut-off glow plug shield model and a modified two-step methane reaction mechanism, to simulate the natural gas injection and ignition. The simulated results demonstrate the significance of using a shield for the glow plug. Compared to an unshielded (bare) glow plug, the shield not only reduces the heat loss from the hot glow plug surface to the cold intake air charge and the cold injected gas jet but also traps the fuel mixture to increase its residence time adjacent to the hot surface. Over a representative range of heavy-duty diesel engine operating conditions, a shielded glow plug greatly improves the natural gas engine performance and provides reliable ignition, while an unshielded glow plug can only be optimized for specific conditions. The understanding of glow plug shield behavior gained from the simulations suggests avenues for improved shield designs that would yield further reduced ignition delays.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2729
Author(s):  
Ireneusz Pielecha ◽  
Sławomir Wierzbicki ◽  
Maciej Sidorowicz ◽  
Dariusz Pietras

The development of internal combustion engines involves various new solutions, one of which is the use of dual-fuel systems. The diversity of technological solutions being developed determines the efficiency of such systems, as well as the possibility of reducing the emission of carbon dioxide and exhaust components into the atmosphere. An innovative double direct injection system was used as a method for forming a mixture in the combustion chamber. The tests were carried out with the use of gasoline, ethanol, n-heptane, and n-butanol during combustion in a model test engine—the rapid compression machine (RCM). The analyzed combustion process indicators included the cylinder pressure, pressure increase rate, heat release rate, and heat release value. Optical tests of the combustion process made it possible to analyze the flame development in the observed area of the combustion chamber. The conducted research and analyses resulted in the observation that it is possible to control the excess air ratio in the direct vicinity of the spark plug just before ignition. Such possibilities occur as a result of the properties of the injected fuels, which include different amounts of air required for their stoichiometric combustion. The studies of the combustion process have shown that the combustible mixtures consisting of gasoline with another fuel are characterized by greater combustion efficiency than the mixtures composed of only a single fuel type, and that the influence of the type of fuel used is significant for the combustion process and its indicator values.


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


2008 ◽  
Vol 71 (1) ◽  
pp. 109-118 ◽  
Author(s):  
S. VIAZIS ◽  
B. E. FARKAS ◽  
L. A. JAYKUS

Low-temperature, long-time (LTLT) pasteurization assures the safety of banked human milk; however, heat can destroy important nutritional biomolecules. High-pressure processing (HPP) shows promise as an alternative for pasteurization of breast milk. The purpose of this study was to investigate the efficacy of HPP for inactivation of selected bacterial pathogens in human milk. Human milk was inoculated with one of five pathogens (108 to 109 CFU/ml), while 0.1% peptone solution solutions with the same levels of each organism were used as controls. The samples were subjected to 400 MPa at 21 to 31°C for 0 to 50 min or to 62.5°C for 0 to 30 min (capillary tube method) to simulate LTLT pasteurization. Tryptic soy agar and selective media were used for enumeration. Traditional thermal pasteurization resulted in inactivation (>7 log) of all pathogens within 10 min. In human milk and in peptone solution, a 6-log reduction was achieved after 30 min of HPP for Staphylococcus aureus ATCC 6538. After 30 min, S. aureus ATCC 25923 was reduced by 8 log and 6 log in human milk and peptone solution, respectively. Treatments of 4 and 7 min resulted in an 8-log inactivation of Streptococcus agalactiae ATCC 12927 in human milk and peptone solution, respectively, while Listeria monocytogenes ATCC 19115 required 2 min for an 8-log inactivation in human milk. Escherichia coli ATCC 25922 was inactivated by 8 log after 10 min in peptone solution and by 6 log after 30 min in human milk. These data suggest that HPP may be a promising alternative for pasteurization of human milk. Further research should evaluate the efficacy of HPP in the inactivation of relevant viral pathogens.


Sign in / Sign up

Export Citation Format

Share Document