A study on the influence of hull wake on model scale cavitation and noise tests for a fast twin screw vessel with inclined shaft

Author(s):  
Giorgio Tani ◽  
Michele Viviani ◽  
Diego Villa ◽  
Marco Ferrando

The study of ship underwater radiated noise is nowadays a topic of great and largely recognized importance. This is due to the fact that in the last decades, the problem of the impact of anthropogenic noise on marine life has been addressed with higher emphasis, giving rise to different efforts aimed to the analysis of its effects on different organisms and, in parallel, to means for the reduction of shipping noise. In this context, attention is focused on the propeller noise, which, in cavitating conditions, may represent the most important noise source of the ship. The propeller noise has been studied for long time with different approaches. One of the most effective approaches is represented by model scale testing in cavitation tunnels or similar facilities. Despite having been adopted for several years, radiated noise experiments in model scale are usually affected by significant scale effects and technical issues. One of these aspects is represented by the correct modelling of the propeller inflow; different techniques are adopted, depending on the facility, in order to reproduce a certain target wake. One of the main problems is to define this target wake, which should in principle coincide with the ship wake; as it is well known, it is usually derived from model scale towing tank measurements, with the necessity for the prediction of the full-scale wake field. Starting from the outcomes of a previous work on the influence of different approaches for the prediction of the full-scale wake field for a single screw ship, in this work, attention is focused on the case of a fast twin screw vessel, analysing the different issues which may be connected to this hull form.

2011 ◽  
Vol 27 (04) ◽  
pp. 202-211
Author(s):  
Auke van der Ploeg

This paper describes a procedure to optimize ship hull forms, based on double body viscous flow computations with PARNASSOS. A flexible and effective definition of parametric hull form variations is used, based on interpolation between basis hull forms. One of the object functions is an estimate of the required power. In this paper we will focus on how to improve this estimate, by using the B-series of propellers. Results of systematic variations applied to the VIRTUE tanker together with scale effects in the computed trends will be discussed. In addition, we will demonstrate how the techniques discussed in this paper can be used to design a model that has a wake field that strongly resembles the wake of a given containership ship at full scale.


Author(s):  
Arjen Koop ◽  
Alexei Bereznitski

In this paper results of CFD calculations with the MARIN in-house code ReFRESCO are presented for the JBF-14000 Semi-Submersible designed by Huisman Equipment BV. The objective of the CFD calculations is to investigate the applicability, the costs and the accuracy of CFD to obtain the current coefficients of a semi-submersible for all headings. Furthermore, full scale CFD calculations are carried out to investigate possible scale effects on the current coefficients. An extensive verification study has been carried for the model-scale current loads on a semi-submersible using 10 different grids of different grid type for 3 different headings, i.e. 180, 150 and 90 degrees. These headings represent the main different flow regions around the semi-submersible. The CFD results are compared with the results from wind tunnel experiments and tests in the Offshore Basin for a range of current headings. The results for the force coefficients are not very dependent on grid resolution and grid type. The largest differences found are less than 10% and these are obtained for CX results for 180 degrees. For the results obtained on the same grid type the results change less than 4% when the grid is refined. These verification results give good confidence in the CFD results. For the angles with larger forces, i.e. the range [180:130] for CX and the range [150:90] for CY the CFD results are within 12% or better from the experiments. Full-scale force coefficients are calculated using 5 subsequently refined grids for three different headings, i.e. 180, 150 and 90 degrees. Scale effects should only be determined when the effect of grid refining is investigated. The trend of the force coefficients when refining the grid, can be different for model-scale and full-scale. The use of coarse grids can lead to misleading conclusions. On average the full-scale values are approximately 15–20% lower than for model-scale. However, larger differences for a number of angles do exist.


2019 ◽  
Author(s):  
Danio Joe ◽  
Vijit Misra ◽  
R Vijayakumar

The impact of increased Underwater Radiated Noise (URN) over the past two decades on marine mammals has resulted in the pressing requirement to reduce it. Shipping contributes immensely to the URN. Propeller noise is a major source of URN. The reduction in Propeller noise can hence significantly help in the reduction of URN. With the sole objective of improving the hydrodynamic performance of propellers ways to prevent cavitation are being developed. However, the reduction of non cavitating noise produced by the propeller would still remain a challenge. The change in the propeller geometry can modify the acoustic characteristics. In this present study, effect of modifying the tip of DTMB4119 propeller on the acoustic and hydrodynamic characteristics is presented. The change in the flow pattern at the tip due to introduction of tip rake is also discussed. The SPL has been calculated by using the two-step Ffowcs William and Hawkings (FW-H) equations from the pressure distribution at various points around the propeller. SPL at various points in the downstream and propeller disk plane are numerically predicted and discussed.


Author(s):  
Erik-Jan de Ridder ◽  
William Otto ◽  
Gert-Jan Zondervan ◽  
Fons Huijs ◽  
Guilherme Vaz

In the last years MARIN has been involved in an increasing number of projects for the offshore wind industry. New techniques in model testing and numerical simulations have been developed in this field. In this paper the development of a scaled-down wind turbine operating on a floating offshore platform, similar to the well-known 5MW NREL wind turbine is discussed. To simulate the response of a floating wind turbine correctly it is important that the environmental loads due to wind, waves and current are in line with full scale. For dynamic similarity on model scale, Froude scaling laws are used successfully in the Offshore industry for the underwater loads. To be consistent with the underwater loads, the winds loads have to be scaled according to Froude as well. Previous model tests described by Robertson et al [1] showed that a geometrically-scaled turbine generated a lower thrust and power coefficient with a Froude-scaled wind velocity due to the strong Reynolds scale effects on the flow. To improve future model testing, a new scaling method for the wind turbine blades was developed originally by University of Maine, and here improved and applied. In this methodology, the objective is to obtain power and thrust coefficients which are similar to the full-scale turbine in Froude-scaled wind. This is obtained by changing the geometry of the blades in order to provide thrust equality between model and full scale, and can therefore be considered as a “performance scaling”. This method was then used to design and construct a new MARIN Stock Wind Turbine (MSWT) based on the NREL 5MW wind turbine blade, including an active blade pitch control to simulate different blade pitch control systems. MARIN’s high-quality wind setup in combination with the new model scale stock wind turbine was used for testing the GustoMSC Tri-Floater semi-submersible as presented in Figure 1, including an ECN active blade pitch control algorithm. From the model tests it was concluded that the measured thrust versus wind velocity characteristics of the new MSWT were in line with the full scale prediction and with CFD (Computational Fluid Dynamics) results.


2019 ◽  
Vol 4 (01) ◽  
pp. 17-44
Author(s):  
A. H. Day ◽  
P. Cameron ◽  
S. Dai

Abstract: This study examines the hydrodynamic performance of a high performance skiff hull using three different physical testing techniques which may be used in early stage design for assessment of the upright resistance of sailing vessels. The hull chosen as a benchmark form is a high-speed hard-chine sailing dinghy, typical of modern trends in skiff design, and is broadly similar to some high performance yacht hulls. The 4.55 m hull was tested at full scale in a moderate size towing tank, at 1:2.5 scale in the same tank, and at full-scale by towing on open water. The work presented here builds on the study of Day & Cameron (2017), with the model tests repeated and re-analyzed in the present study and additional results presented. The challenges of full-scale open-water testing are discussed and several potential improvements in practice are identified for future work. Results show that the open water testing broadly matches well with model-scale tank testing, with the mean discrepancy in the measured resistance between the two around 4% over the speed range tested after correction for the presence of the rudder. Agreement is initially less good for the full-scale hull in the tank for higher speeds, both for resistance and trim. ITTC guidelines suggest that blockage may be an issue for the full-scale boat in this size of tank; comparison of the results suggests that blockage, and/or finite depth effects for the full-scale hull in the tank present a substantial problem at the higher speeds. A correction approach for the wave resistance of the full scale results using a calculation based on a linear thin ship theory is effective in this case, and results show that the full scale and model scale tests agree satisfactorily for the majority of the speed range after this correction. In addition to upright resistance in calm water, results are presented for the impact of small waves, the addition of the rudder, and variations in displacement and trim on resistance for a skiff hull. Finally, the results are compared with predictions from the well-known Delft series regression equations, Savitsky's methods, and a thin ship calculation. The thin ship approach gives good agreement for the case in which the hull is trimmed bow-down and the transom is not immersed, while the Savitsky pre-planing approach gives good agreement for the level trim case. The Delft series and Savitsky planing hull approaches do not give good agreement with physical measurements.


2018 ◽  
Vol 18 (2) ◽  
pp. 134-151
Author(s):  
Andrea Circolo ◽  
Ondrej Hamuľák

Abstract The paper focuses on the very topical issue of conclusion of the membership of the State, namely the United Kingdom, in European integration structures. The ques­tion of termination of membership in European Communities and European Union has not been tackled for a long time in the sources of European law. With the adop­tion of the Treaty of Lisbon (2009), the institute of 'unilateral' withdrawal was intro­duced. It´s worth to say that exit clause was intended as symbolic in its nature, in fact underlining the status of Member States as sovereign entities. That is why this institute is very general and the legal regulation of the exercise of withdrawal contains many gaps. One of them is a question of absolute or relative nature of exiting from integration structures. Today’s “exit clause” (Art. 50 of Treaty on European Union) regulates only the termination of membership in the European Union and is silent on the impact of such a step on membership in the European Atomic Energy Community. The presented paper offers an analysis of different variations of the interpretation and solution of the problem. It´s based on the independent solution thesis and therefore rejects an automa­tism approach. The paper and topic is important and original especially because in the multitude of scholarly writings devoted to Brexit questions, vast majority of them deals with institutional questions, the interpretation of Art. 50 of Treaty on European Union; the constitutional matters at national UK level; future relation between EU and UK and political bargaining behind such as all that. The question of impact on withdrawal on Euratom membership is somehow underrepresented. Present paper attempts to fill this gap and accelerate the scholarly debate on this matter globally, because all consequences of Brexit already have and will definitely give rise to more world-wide effects.


Author(s):  
Madara Eversone

The article aims to highlight the role of Arvīds Grigulis’ (1906–1989) personality in the Latvian Soviet literary process in the context of the Latvian Soviet Writers’ Union, attempting to discover the contradictions and significance of Arvīds Grigulis’ personality. Arvīds Grigulis was a long-time member of the Writers’ Union, a member of the Soviet nomenklatura, and an authority of the soviet literary process. His evaluations of pre-soviet literary heritage and writings of his contemporaries were often harsh and ruthless, and also influenced the development of the further literary process. The article is based on the documents of the Central Committee of the Latvian Communist Party, the Latvian Soviet Writers’ Union and the Communist Party local organization of the Latvian Soviet Writers’ Union that are available at the Latvian State Archive of the National Archives of Latvia, as well as memories of Grigulis’ contemporaries. It is concluded that the personality of the writer Arvīds Grigulis, although unfolding less in the context of the Writers’ Union, is essential for the exploration of the soviet literary process and events behind the scenes. The article mainly describes events and episodes taking place until 1965, when Arvīds Grigulis’ influence in the Writers’ Union was more remarkable. Individual and further studies should analyse changes and the impact of his decisions in the cultural process of the 70s and 80s of the 20th century.


Author(s):  
Jaroslav Tir ◽  
Johannes Karreth

Civil wars are one of the most pressing problems facing the world. Common approaches such as mediation, intervention, and peacekeeping have produced some results in managing ongoing civil wars, but they fall short in preventing civil wars in the first place. This book argues for considering civil wars from a developmental perspective to identify steps to assure that nascent, low-level armed conflicts do not escalate to full-scale civil wars. We show that highly structured intergovernmental organizations (IGOs, e.g. the World Bank or IMF) are particularly well positioned to engage in civil war prevention. Such organizations have both an enduring self-interest in member-state peace and stability and potent (economic) tools to incentivize peaceful conflict resolution. The book advances the hypothesis that countries that belong to a larger number of highly structured IGOs face a significantly lower risk that emerging low-level armed conflicts on their territories will escalate to full-scale civil wars. Systematic analyses of over 260 low-level armed conflicts that have occurred around the globe since World War II provide consistent and robust support for this hypothesis. The impact of a greater number of memberships in highly structured IGOs is substantial, cutting the risk of escalation by over one-half. Case evidence from Indonesia’s East Timor conflict, Ivory Coast’s post-2010 election crisis, and from the early stages of the conflict in Syria in 2011 provide additional evidence that memberships in highly structured IGOs are indeed key to understanding why some low-level armed conflicts escalate to civil wars and others do not.


Sign in / Sign up

Export Citation Format

Share Document