Cradle-to-gate life cycle assessment of ships: A case study of Panamax bulk carrier

Author(s):  
Dong Duc Tuan ◽  
Cai Wei

Seaborne transport plays an important role in global transportation, and ships’ emissions are worth considering. By applying life cycle assessment method, the environmental impacts of ships could be evaluated. Life cycle assessment is an effective tool as this method provides a holistic perspective of a product or a service in its life cycle. In an attempt to clarify emissions released from the cradle-to-gate life cycle of ships, especially from processes in shipbuilding which were not considered adequately from some previous studies, this study conducts life cycle assessment method to assess the environmental impacts of a Panamax bulk carrier from raw material extraction to shipbuilding phase. In order to clarify life cycle emissions, some helpful mathematical formulas are also established. Ten environmental categories of CML 2001 life cycle impact assessment methodology that are relevant to the marine context are chosen for evaluating the environmental impacts. To obtain emission inventory and impact assessment results, a life cycle assessment software— GaBi—has been used. The results show that material extraction and production phase accounts for more than 85% carbon dioxide, carbon monoxide, nitrous oxide, and methane, while shipbuilding phase is responsible for 99.91% volatile organic compounds, 36.08% non-methane organic compounds, and 26.76% particulate matter emissions. In relation to environmental indicators, material consumption is much more significant than other processes and accounts for more than 86% of values of 10 environmental categories. This study is useful as it provides necessary information for life cycle assessment in the shipping industry in the future.

2021 ◽  
Author(s):  
Kristína Kováčiková ◽  
◽  
Antonín Kazda

The paper is focused on the assessment of the environmental impacts of transport infrastructure and individual types of transport using the life cycle assessment method. The paper contains a description of the basic terminology of the problem related to transport, the environment and methods of environmental impact assessment. The paper contains analysis on monitoring carbon dioxide emissions from a global perspective as well as from a regional perspective focused on Slovakia. The aim of the paper is to create a proposal for the assessment of environmental impacts of transport infrastructure, in the form of specification of areas of assessment for selected types of transport with a focus on carbon dioxide emissions. Using the knowledge and principles of the life cycle method, a proposal for relevant indicators and a proposal for a comprehensive assessment of the impacts of selected types of transport, focused on carbon dioxide emissions, is created in the paper


2021 ◽  
Vol 228 ◽  
pp. 02003
Author(s):  
Phatcharapron Sukkanta ◽  
Krittaphas Mongkolkoldhumrongkul

Climate change affects all regions around the world, so efforts to minimize the environmental impacts of climate change have high importance. The aim of this study is to evaluate the environmental impacts on the production of heaven mushroom product at the Ban Tai Khod community in Rayong, Thailand. In this study, cradle to gate was selected as the system boundary and functional unit from the life cycle assessment method. The results found that the process of building a mushroom house has the highest greenhouse gas emissions of 1, 496.609 kgCO2eq. The mushroom cubes mixing process has the highest energy consumption throughout the production process, requiring an energy consumption of 5.595 kWh. The greenhouse gas is released amount 3, 588.362 kgCO2eq. throughout this process. Additionally, the payback period of the heaven mushroom product is 0.92 years.


Author(s):  
Duc Tuan Dong ◽  
Wei Cai

Life-cycle assessment has been widely applied in many industry sectors for years and there are some applications of this method in the shipping sector. Fuel consumption and material consumption are considered as crucial factors in the life cycle of ship. This study uses the life-cycle assessment method to show the effects of fuel consumption reduction and light displacement tonnage on the environmental performance of ships. This is done by comparing the environmental impacts of 25 investigated scenarios with different fuel consumption and light displacement tonnage. CML2001 methodology is used to evaluate the impact assessment and the results are calculated using GaBi software. The results show that fuel consumption reduction could cut down the environmental impacts. However, some scenarios are not environmentally beneficial due to the increase in light displacement tonnage. The effects of fuel consumption and light displacement tonnage on 12 CML2001 environmental indicators are different. It is recommended that the life-cycle assessment method should be used to fully assess the environmental impacts of ships before applying any techniques in order to achieve the environmental benefits.


Author(s):  
Manish Sakhlecha ◽  
Samir Bajpai ◽  
Rajesh Kumar Singh

Buildings consume major amount of energy as well as natural resources leading to negative environmental impacts like resource depletion and pollution. The current task for the construction sector is to develop an evaluation tool for rating of buildings based on their environmental impacts. There are various assessment tools and models developed by different agencies in different countries to evaluate building's effect on environment. Although these tools have been successfully used and implemented in the respective regions of their origin, the problems of application occur, especially during regional adaptation in other countries due to peculiarities associated with the specific geographic location, climatic conditions, construction methods and materials. India is a rapidly growing economy with exponential increase in housing sector. Impact assessment model for a residential building has been developed based on life cycle assessment (LCA) framework. The life cycle impact assessment score was obtained for a sample house considering fifteen combinations of materials paired with 100% thermal electricity and 70%-30% thermal-solar combination, applying normalization and weighting to the LCA results. The LCA score of portland slag cement with burnt clay red brick and 70%-30% thermal-solar combination (PSC+TS+RB) was found to have the best score and ordinary Portland cement with flyash brick and 100% thermal power (OPC+T+FAB) had the worst score, showing the scope for further improvement in LCA model to include positive scores for substitution of natural resources with industrial waste otherwise polluting the environment.


Author(s):  
Daniele Landi ◽  
Leonardo Postacchini ◽  
Paolo Cicconi ◽  
Filippo E. Ciarapica ◽  
Michele Germani

In industrialized countries, packaging waste is one of the major issues to deal with, representing around 35% of the total municipal solid waste yearly generated. Therefore, an analysis and an environmental assessment of packaging systems are necessary. This paper aims at analyzing and comparing the environmental performances of two different packaging for domestic hoods. It shows how, through a packaging redesign, it is possible to obtain a reduction of the environmental impacts. This study has been performed in accordance with the international standards ISO 14040/14044, by using attributional Life Cycle Assessment (LCA) from Cradle to Gate. The functional unit has been defined as the packaging of a single household hood. Primary data have been provided by a household hood manufacturer, while secondary data have been obtained from the Ecoinvent database. LCA software SimaPro 8.5 has been used to carry out the life cycle assessment, and ReCiPe method has been chosen for the life cycle impact assessment (LCIA) stage. The results have shown the new packaging model being able to cut down the environmental impacts of approximately 30%. These outcomes may be used by household manufacturers to improve performances and design solutions of their different packaging.


2019 ◽  
Vol 25 (3) ◽  
pp. 456-477 ◽  
Author(s):  
Heini Elomaa ◽  
Pia Sinisalo ◽  
Lotta Rintala ◽  
Jari Aromaa ◽  
Mari Lundström

Abstract Purpose Currently, almost all cyanide-free gold leaching processes are still in the development stage. Proactively investigating their environmental impacts prior to commercialization is of utmost importance. In this study, a detailed refractory gold concentrate process simulation with mass and energy balance was built for state-of-the-art technology with (i) pressure oxidation followed by cyanidation and, compared to alternative cyanide-free technology, with (ii) pressure oxidation followed by halogen leaching. Subsequently, the simulated mass balance was used as life cycle inventory data in order to evaluate the environmental impacts of the predominant cyanidation process and a cyanide-free alternative. Methods The environmental indicators for each scenario are based on the mass balance produced with HSC Sim steady-state simulation. The simulated mass balances were evaluated to identify the challenges in used technologies. The HSC Sim software is compatible with the GaBi LCA software, where LCI data from HSC-Sim is directly exported to. The simulation produces a consistent life cycle inventory (LCI). In GaBi LCA software, the environmental indicators of global warming potential (GWP), acidification potential (AP), terrestrial eutrophication potential (EP), and water depletion (Water) are estimated. Results and discussion The life cycle assessment revealed that the GWP for cyanidation was 10.1 t CO2-e/kg Au, whereas the halogen process indicated a slightly higher GWP of 12.6 t CO2-e/kg Au. The difference is partially explained by the fact that the footprint is calculated against produced units of Au; total recovery by the halogen leaching route for gold was only 87.3%, whereas the cyanidation route could extract as much as 98.5% of gold. The addition of a second gold recovery unit to extract gold also from the washing water in the halogen process increased gold recovery up to 98.5%, decreasing the GWP of the halogen process to 11.5 t CO2-e/kg Au. However, both evaluated halogen processing scenarios indicated a slightly higher global warming potential when compared to the dominating cyanidation technology. Conclusions The estimated environmental impacts predict that the development-stage cyanide-free process still has some challenges compared to cyanidation; as in the investigated scenarios, the environmental impacts were generally higher for halogen leaching. Further process improvements, for example in the form of decreased moisture in the feed for halide leaching, and the adaptation of in situ gold recovery practices in chloride leaching may give the cyanide-free processing options a competitive edge.


2019 ◽  
Vol 11 (10) ◽  
pp. 2747 ◽  
Author(s):  
Andrew Berardy ◽  
Carol S. Johnston ◽  
Alexandra Plukis ◽  
Maricarmen Vizcaino ◽  
Christopher Wharton

Life cycle assessment (LCA) evaluates environmental impacts of a product from material extraction through disposal. Applications of LCA in evaluating diets and foods indicate that plant-based foods have lower environmental impacts than animal-based foods, whether on the basis of total weight or weight of the protein content. However, LCA comparisons do not differentiate the true biological value of protein bioavailability. This paper presents a methodology to incorporate protein quality and quantity using the digestible indispensable amino acid score (DIAAS) when making comparisons using LCA data. The methodology also incorporates the Food and Drug Administration’s (FDA) reference amounts customarily consumed (RACCs) to best represent actual consumption patterns. Integration of these measures into LCA provides a mechanism to identify foods that offer balance between the true value of their protein and environmental impacts. To demonstrate, this approach is applied to LCA data regarding common protein foods’ global warming potential (GWP). The end result is a ratio-based score representing the biological value of protein on a GWP basis. Principal findings show that protein powders provide the best efficiency while cheeses, grains, and beef are the least efficient. This study demonstrates a new way to evaluate foods in terms of nutrition and sustainability.


2021 ◽  
Vol 13 (21) ◽  
pp. 11682
Author(s):  
Martin Nwodo ◽  
Chimay Anumba

The relevance of exergy to the life cycle assessment (LCA) of buildings has been studied regarding its potential to solve certain challenges in LCA, such as the characterization and valuation, accuracy of resource use, and interpretation and comparison of results. However, this potential has not been properly investigated using case studies. This study develops an exergy-based LCA method and applies it to three case-study buildings to explore its benefits. The results provide evidence that the theoretical benefits of exergy-based LCA as against a conventional LCA can be achieved. These include characterization and valuation benefits, accuracy, and enabling the comparison of environmental impacts. With the results of the exergy-based LCA method in standard metrics, there is now a mechanism for the competitive benchmarking of building sustainability assessments. It is concluded that the exergy-based life cycle assessment method has the potential to solve the characterization and valuation problems in the conventional life-cycle assessment of buildings, with local and global significance.


2019 ◽  
Vol 11 (20) ◽  
pp. 5628 ◽  
Author(s):  
Jan Lindner ◽  
Horst Fehrenbach ◽  
Lisa Winter ◽  
Judith Bloemer ◽  
Eva Knuepffer

In this article, the authors propose an impact assessment method for life cycle assessment (LCA) that adheres to established LCA principles for land use-related impact assessment, bridges current research gaps and addresses the requirements of different stakeholders for a methodological framework. The conservation of biodiversity is a priority for humanity, as expressed in the framework of the Sustainable Development Goals (SDGs). Addressing biodiversity across value chains is a key challenge for enabling sustainable production pathways. Life cycle assessment is a standardised approach to assess and compare environmental impacts of products along their value chains. The impact assessment method presented in this article allows the quantification of the impact of land-using production processes on biodiversity for several broad land use classes. It provides a calculation framework with degrees of customisation (e.g., to take into account regional conservation priorities), but also offers a default valuation of biodiversity based on naturalness. The applicability of the method is demonstrated through an example of a consumer product. The main strength of the approach is that it yields highly aggregated information on the biodiversity impacts of products, enabling biodiversity-conscious decisions about raw materials, production routes and end user products.


Sign in / Sign up

Export Citation Format

Share Document