Mechanical Properties of the Composite Material Based on Modified Scrap Tires and Polymer Binder

2013 ◽  
Vol 29 (3) ◽  
pp. 177-187 ◽  
Author(s):  
R. Plesuma ◽  
A. Megne ◽  
I. Mateusa-Krukle ◽  
L. Malers
2016 ◽  
Vol 721 ◽  
pp. 3-7 ◽  
Author(s):  
Renate Plesuma ◽  
Laimonis Malers

Mechanical properties of polyurethane type polymer binder with selected reactivity, used for production of the composite material based on scrap tires, were investigated under different crosslinking conditions: temperature, relative air humidity, hardening time. Shore C hardness, tensile strength and elongation at break were selected as main parameters, reflecting crosslinking degree of the prepared polymer binder films. DMA investigation of the samples in tensile mode of loading were realized to clear up influence of deformation circumstances on storage and loss components of the elasticity modulus. Strong correlation between mentioned above mechanical properties of the polymer binder and selected crosslinking conditions of the polymer were obtained. It was affirmed previously, that crosslinking degree of the polymer binder in the same time has direct influence also on mechanical properties of the composite material.


2020 ◽  
Vol 850 ◽  
pp. 107-111
Author(s):  
Laimonis Mālers ◽  
Agnija Cirvele

Functional properties of composite material based on mechanically grinded scrap tires with different particle size of fractioned crumb and polyurethane type polymer binder were investigated to estimate influence of rubber particles size and content on composite material properties (Shore C hardness, compressive stress at 10 % deformation, tensile strength, elastic modulus and elongation at break, apparent density). Optimization possibilities of composite material consisting of rubber particles with different sizes or fractions were investigated. The obtained results show that variation of composition of the composite material by changing size of rubber granulate have definite influence on selected properties of the material. Purposeful selection and mutual combination of rubber particles size included in material can ensure desirable and predictable mechanical properties of composite material.


2018 ◽  
Vol 762 ◽  
pp. 182-185 ◽  
Author(s):  
Laimonis Malers ◽  
Renate Kurme

Composite materials based on scrap tires and polyurethane type polymer binder with defined reactivity were investigated to underline the influence of water (varying air humidity, special treatment of rubber crumb with water) during the production on selected mechanical properties. Compressive stress and modulus of elasticity E at 10% deformation, Shore C hardness and apparent density were investigated. Strong correlation between the above-mentioned mechanical properties of the composite materials and the crosslinking conditions of the polymer (presence of water during the production of composite materials) were observed. It has been confirmed previously that the crosslinking degree of polyurethane type binder separately and, therefore, at the same time mechanical properties of binder was strongly dependent on water as a significant factor during the hardening of the polymer.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Renate Plesuma ◽  
Laimonis Malers

AbstractThe present article is dedicated to the determination of a possible connection between the composition, specific properties of the composite material and molding pressure as an important technological parameter. Apparent density, Shore C hardness, compressive modulus of elasticity and compressive stress at 10% deformation was determined for composite material samples. Definite formation conditions – varying molding pressure conditions at ambient temperature and corresponding relative air humiditywere realized. The results obtained showed a significant effect of molding pressure on the apparent density, mechanical properties of composite material as well as on the compressive stress change at a cyclic mode of loading. Some general regularities were determined - mechanical properties of the composite material, as well as values of Shore C hardness increases with an increase of molding pressure.


Author(s):  
E. Sukedai ◽  
H. Mabuchi ◽  
H. Hashimoto ◽  
Y. Nakayama

In order to improve the mechanical properties of an intermetal1ic compound TiAl, a composite material of TiAl involving a second phase Ti2AIN was prepared by a new combustion reaction method. It is found that Ti2AIN (hexagonal structure) is a rod shape as shown in Fig.1 and its side surface is almost parallel to the basal plane, and this composite material has distinguished strength at elevated temperature and considerable toughness at room temperature comparing with TiAl single phase material. Since the property of the interface of composite materials has strong influences to their mechanical properties, the structure of the interface of intermetallic compound and nitride on the areas corresponding to 2, 3 and 4 as shown in Fig.1 was investigated using high resolution electron microscopy and image processing.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 145
Author(s):  
Lesław Kyzioł ◽  
Katarzyna Panasiuk ◽  
Grzegorz Hajdukiewicz ◽  
Krzysztof Dudzik

Due to the unique properties of polymer composites, these materials are used in many industries, including shipbuilding (hulls of boats, yachts, motorboats, cutters, ship and cooling doors, pontoons and floats, torpedo tubes and missiles, protective shields, antenna masts, radar shields, and antennas, etc.). Modern measurement methods and tools allow to determine the properties of the composite material, already during its design. The article presents the use of the method of acoustic emission and Kolmogorov-Sinai (K-S) metric entropy to determine the mechanical properties of composites. The tested materials were polyester-glass laminate without additives and with a 10% content of polyester-glass waste. The changes taking place in the composite material during loading were visualized using a piezoelectric sensor used in the acoustic emission method. Thanks to the analysis of the RMS parameter (root mean square of the acoustic emission signal), it is possible to determine the range of stresses at which significant changes occur in the material in terms of its use as a construction material. In the K-S entropy method, an important measuring tool is the extensometer, namely the displacement sensor built into it. The results obtained during the static tensile test with the use of an extensometer allow them to be used to calculate the K-S metric entropy. Many materials, including composite materials, do not have a yield point. In principle, there are no methods for determining the transition of a material from elastic to plastic phase. The authors showed that, with the use of a modern testing machine and very high-quality instrumentation to record measurement data using the Kolmogorov-Sinai (K-S) metric entropy method and the acoustic emission (AE) method, it is possible to determine the material transition from elastic to plastic phase. Determining the yield strength of composite materials is extremely important information when designing a structure.


2012 ◽  
Vol 496 ◽  
pp. 281-284
Author(s):  
Wen Wen Liu ◽  
Zhi Wang ◽  
Yun Hai Du ◽  
Xian Zhong Xu ◽  
Da Quan Liu ◽  
...  

An improved accurate speckle projection method is used for study the mechanical properties of the composite material film in the paper. A system for deformation measurement is developed with the telecentric lenses, in which such conventional lens’ disadvantages such as lens distortion and perspective error will be diminished. Experiments are performed to validate the availability and reliability of the calibration method. The system can also be used to measure the dynamic deformation and then results are also given.


Sign in / Sign up

Export Citation Format

Share Document