scholarly journals RASL11B gene enhances hyaluronic acid-mediated chondrogenic differentiation in human amniotic mesenchymal stem cells via the activation of Sox9/ERK/smad signals

2020 ◽  
Vol 245 (18) ◽  
pp. 1708-1721
Author(s):  
Yi Luo ◽  
Ai-Tong Wang ◽  
Qing-Fang Zhang ◽  
Ru-Ming Liu ◽  
Jian-Hui Xiao

This study aimed to elucidate the molecular mechanisms, whereby hyaluronic acid, a main extracellular matrix component of articular cartilage, promotes the chondrogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs). Our previous findings indicated that hyaluronic acid combined with hAMSCs showed a marked therapeutic effect against rat osteoarthritis. In the present study, hyaluronic acid markedly enhanced the expression of chondrocyte-specific markers including Col2α1, Acan, and Sox9 in hAMSCs, with strong synergistic effects on chondrogenic differentiation, in combination with the commonly used inducer, transforming growth factor β3 (TGF-β3). Microarray analysis showed that Ras-like protein family member 11B (RASL11B) played a pivotal role in the process of hyaluronic acid-mediated chondrogenesis of hAMSCs. This directional differentiation was significantly inhibited by RASL11B knockdown, but RASL11B overexpression dramatically promoted the expression of Sox9, a master chondrogenesis transcriptional factor, at the levels of transcription and translation. Increased Sox9 expression subsequently resulted in high expression levels of Col2α1 and Acan and the accumulation of cartilage-specific matrix components, such as type 2 collagen and glycosaminoglycans. Moreover, we observed that RASL11B activated the signal molecules such as ERK1/2, and Smad2/3 in the presence of hyaluronic acid during TGF-β3-induced chondrogenesis of hAMSCs. Taken together, these findings suggest that hyaluronic acid activates the RASL11B gene to potentiate the chondrogenic differentiation of hAMSCs via the activation of Sox9 and ERK/Smad signaling, thus providing a new strategy for cartilage defect repairing by hyaluronic acid-based stem cell therapy.

2020 ◽  
Vol 134 ◽  
pp. 107536 ◽  
Author(s):  
Juan Jairo Vaca-González ◽  
Sandra Clara-Trujillo ◽  
María Guillot-Ferriols ◽  
Joaquín Ródenas-Rochina ◽  
María J. Sanchis ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jun Zhang ◽  
Ziming Liu ◽  
Yuwan Li ◽  
Qi You ◽  
Jibin Yang ◽  
...  

Background. FGF-2 (basic fibroblast growth factor) has a positive effect on the proliferation and differentiation of many kinds of MSCs. Therefore, it represents an ideal molecule to facilitate tendon-to-bone healing. Nonetheless, no studies have investigated the application of FGF-2-induced human amniotic mesenchymal stem cells (hAMSCs) to accelerate tendon-to-bone healing in vivo. Objective. The purpose of this study was to explore the effect of FGF-2 on chondrogenic differentiation of hAMSCs in vitro and the effect of FGF-2-induced hAMSCs combined with a human acellular amniotic membrane (HAAM) scaffold on tendon-to-bone healing in vivo. Methods. In vitro, hAMSCs were transfected with a lentivirus carrying the FGF-2 gene, and the potential for chondrogenic differentiation of hAMSCs induced by the FGF-2 gene was assessed using immunofluorescence and toluidine blue (TB) staining. HAAM scaffold was prepared, and hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) were used to observe the microstructure of the HAAM scaffold. hAMSCs transfected with and without FGF-2 were seeded on the HAAM scaffold at a density of 3×105 cells/well. Immunofluorescence staining of vimentin and phalloidin staining were used to confirm cell adherence and growth on the HAAM scaffold. In vivo, the rabbit extra-articular tendon-to-bone healing model was created using the right hind limb of 40 New Zealand White rabbits. Grafts mimicking tendon-to-bone interface (TBI) injury were created and subjected to treatment with the HAAM scaffold loaded with FGF-2-induced hAMSCs, HAAM scaffold loaded with hAMSCs only, HAAM scaffold, and no special treatment. Macroscopic observation, imageological analysis, histological assessment, and biomechanical analysis were conducted to evaluate tendon-to-bone healing after 3 months. Results. In vitro, cartilage-specific marker staining was positive for the FGF-2 overexpression group. The HAAM scaffold displayed a netted structure and mass extracellular matrix structure. hAMSCs or hAMSCs transfected with FGF-2 survived on the HAAM scaffold and grew well. In vivo, the group treated with HAAM scaffold loaded with FGF-2-induced hAMSCs had the narrowest bone tunnel after three months as compared with other groups. In addition, macroscopic and histological scores were higher for this group than for the other groups, along with the best mechanical strength. Conclusion. hAMSCs transfected with FGF-2 combined with the HAAM scaffold could accelerate tendon-to-bone healing in a rabbit extra-articular model.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 613
Author(s):  
Qing Min ◽  
Jiaoyan Liu ◽  
Yuchen Zhang ◽  
Bin Yang ◽  
Ying Wan ◽  
...  

Alginate-poloxamer (ALG-POL) copolymer with optimal POL content was synthesized, and it was combined with silk fibroin (SF) for building ALG-POL/SF dual network hydrogels. Hyaluronic acid(HA)/chitosan-poly(dioxanone)(CH-PDO) complex nanoparticles (NPs) with optimized composition and high encapsulation efficiency were employed as a vehicle for loading bone morphogenic protein-7 (BMP-7). BMP-7-loaded HA/CH-PDO NPs were incorporated into ALG-POL/SF hydrogel for constructing composite gels to achieve controlled release of BMP-7. These gels showed thermosensitive sol-gel transitions near physiological temperature and pH; and they were tested to be elastic, tough and strong. Some gels exhibited abilities to administer the BMP-7 release in nearly linear manners for a few weeks. Synovium-derived mesenchymal stem cells (SMSCs) were seeded into optimally fabricated gels for assessing their chondrogenic differentiation potency. Real-time PCR analyses showed that the blank ALG-POL/SF gels were not able to induce the chondrogenic differentiation of SMSCs, whereas SMSCs were detected to significantly express cartilage-related genes once they were seeded in the BMP-7-loaded ALG-POL/SF gel for two weeks. The synthesis of cartilaginous matrix components further confirmed that SMSCs seeded in the BMP-7-loaded ALG-POL/SF gel differentiated toward chondrogenesis. Results suggest that BMP-7-loaded ALG-POL/SF composite gels can function as a promising biomaterial for cartilage tissue engineering applications.


2020 ◽  
Vol 21 (6) ◽  
pp. 1967 ◽  
Author(s):  
Jae-Sung Ryu ◽  
Sang Young Seo ◽  
Eun-Jeong Jeong ◽  
Jong-Yeup Kim ◽  
Yong-Gon Koh ◽  
...  

Mesenchymal stem cells, also known as multipotent stromal progenitor cells, can differentiate into cells of mesodermal lineage. Gangliosides are sialic acid-conjugated glycosphingolipids that are believed to regulate cell differentiation and several signaling molecules. These molecules are localized in glycosphingolipid-enriched microdomains on the cell surface and are regulated by glycosphingolipid composition. Transforming growth factor-beta (TGF-β) signaling plays a critical role in chondrogenic differentiation. However, the role of gangliosides in chondrogenesis is not understood. In this study, the relationship between the ganglioside GM3 and TGF-β activation, during chondrogenic differentiation, was investigated using an aggregate culture of human synovial membrane-derived mesenchymal stem cells. We showed that the gangliosides GM3 and GD3 were expressed after the chondrogenic differentiation of hSMSC aggregates. To test whether GM3 affected the chondrogenic differentiation of hSMSC aggregates, we used GM3 treatment during chondrogenic differentiation. The results showed that the group treated with 5 μM GM3 had higher expression of chondrogenic specific markers, increased toluidine blue, and safranin O staining, and increased accumulation of glycosaminoglycans compared with the untreated group. Furthermore, GM3 treatment enhanced TGF-β signaling via SMAD 2/3 during the chondrogenic differentiation of hSMSC aggregates. Taken together, our results suggested that GM3 may be useful in developing therapeutic agents for cell-based articular cartilage regeneration in articular cartilage disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Liangjie Huang ◽  
Lingxian Yi ◽  
Chunli Zhang ◽  
Ying He ◽  
Liangliang Zhou ◽  
...  

Cell-based therapy serves as an effective way for cartilage repair. Compared with a limited source of autologous chondrocytes, adipose-derived stem cells (ADSCs) are proposed as an attractive cell source for cartilage regeneration. How to drive chondrogenic differentiation of ADSCs efficiently remains to be further investigated. TGF-β3 has shown a strong chondrogenic action on ADSCs. Recently, fibroblast growth factor 18 (FGF-18) has gained marked attention due to its anabolic effects on cartilage metabolism, but existing data regarding the role of FGF-18 on the chondrogenic potential of mesenchymal stem cells (MSCs) are conflicting. In addition, whether the combined application of FGF-18 and TGF-β3 would improve the efficiency of the chondrogenic potential of ADSCs has not been thoroughly studied. In the current study, we isolated human ADSCs and characterized the expression of their surface antigens. Also, we evaluated the chondrogenic potential of FGF-18 on ADSCs using an in vitro pellet model by measuring glycosaminoglycan (GAG) content, collagen level, histologic appearance, and expression of cartilage-related genes. We found that FGF-18, similarly to TGF-β3, had a positive impact on chondrogenic differentiation and matrix deposition when presented throughout the culture period. More importantly, we observed synergistic effects of FGF-18 and TGF-β3 on the chondrogenic differentiation of ADSCs in the in vitro pellet model. Our results provide critical information on the therapeutic use of ADSCs with the help of FGF-18 and TGF-β3 for cartilage regeneration.


2016 ◽  
Vol 345 (2) ◽  
pp. 218-229 ◽  
Author(s):  
Ru-Ming Liu ◽  
Ren-Gang Sun ◽  
Ling-Tao Zhang ◽  
Qing-Fang Zhang ◽  
Dai-Xiong Chen ◽  
...  

Cartilage ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 432-438 ◽  
Author(s):  
Laurie M. G. de Kroon ◽  
Esmeralda N. Blaney Davidson ◽  
Roberto Narcisi ◽  
Eric Farrell ◽  
Peter M. van der Kraan ◽  
...  

Objective Previously, we demonstrated the importance of transforming growth factor-β (TGFβ)-activated SMAD2/3 signaling in chondrogenesis of bone marrow–derived mesenchymal stem cells (BMSCs). However, TGFβ also signals via the SMAD1/5/9 pathway, which is known to induce terminal differentiation of BMSCs. In this study, we investigated whether other SMAD2/3-activating ligands, Activin and Nodal, can induce chondrogenic differentiation of BMSCs without inducing terminal differentiation. Design Activation of SMAD2/3 signaling and chondrogenesis were evaluated in human BMSCs ( N = 3 donors) stimulated with TGFβ, Activin, or Nodal. SMAD2/3 activation was assessed by determining phosphorylated-SMAD2 (pSMAD2) protein levels and SMAD2/3-target gene expression of SERPINE1. Chondrogenesis was determined by ACAN and COL2A1 transcript analysis and histological examination of proteoglycans and collagen type II. Results Both Activin and TGFβ enhanced pSMAD2 and SERPINE1 expression compared to the control condition without growth factors, demonstrating activated SMAD2/3 signaling. pSMAD2 and SERPINE1 had a higher level of expression following stimulation with TGFβ than with Activin, while Nodal did not activate SMAD2/3 signaling. Of the 3 ligands tested, only TGFβ induced chondrogenic differentiation as shown by strongly increased transcript levels of ACAN and COL2A1 and positive histological staining of proteoglycans and collagen type II. Conclusions Even with concentrations up to 25 times higher than that of TGFβ, Activin and Nodal do not induce chondrogenic differentiation of BMSCs; thus, neither of the 2 ligands is an interesting alternative candidate for TGFβ to induce chondrogenesis without terminal differentiation. To obtain stable cartilage formation by BMSCs, future studies should decipher how TGFβ-induced terminal differentiation can be prevented.


2014 ◽  
Vol 74 (7) ◽  
pp. 1467-1473 ◽  
Author(s):  
Yury Chaly ◽  
Harry C Blair ◽  
Sonja M Smith ◽  
Daniel S Bushnell ◽  
Anthony D Marinov ◽  
...  

ObjectivesChondrocytes, the only cells in the articular cartilage, play a pivotal role in osteoarthritis (OA) because they are responsible for maintenance of the extracellular matrix (ECM). Follistatin-like protein 1 (FSTL1) is a secreted protein found in mesenchymal stem cells (MSCs) and cartilage but whose function is unclear. FSTL1 has been shown to modify cell growth and survival. In this work, we sought to determine whether FSTL1 could regulate chondrogenesis and chondrogenic differentiation of MSCs.MethodsTo study the role of FSTL1 in chondrogenesis, we used FSTL1 knockout (KO) mice generated in our laboratory. Proliferative capacity of MSCs, obtained from skulls of E18.5 embryos, was analysed by flow cytometry. Chondrogenic differentiation of MSCs was carried out in a pellet culture system. Gene expression differences were assessed by microarray analysis and real-time PCR. Phosphorylation of Smad3, p38 MAPK and Akt was analysed by western blotting.ResultsThe homozygous FSTL1 KO embryos showed extensive skeletal defects and decreased cellularity in the vertebral cartilage. Cell proliferation of FSTL1-deficient MSCs was reduced. Gene expression analysis in FSTL1 KO MSCs revealed dysregulation of multiple genes important for chondrogenesis. Production of ECM proteoglycans and collagen II expression were decreased in FSTL1-deficient MSCs differentiated into chondrocytes. Transforming growth factor β signalling in FSTL1 KO cells was significantly suppressed.ConclusionsFSTL1 is a potent regulator of chondrocyte proliferation, differentiation and expression of ECM molecules. Our findings may lead to the development of novel strategies for cartilage repair and provide new disease-modifying treatments for OA.


2019 ◽  
Vol 68 (3) ◽  
pp. 728-737 ◽  
Author(s):  
Ji-Gang He ◽  
Bei-Bei Li ◽  
Liang Zhou ◽  
Dan Yan ◽  
Qiao-Li Xie ◽  
...  

Expression of indoleamine 2,3-dioxygenase (IDO) in mesenchymal stem cells (MSC) is thought to contribute to MSC-mediated immunosuppression. A lentiviral-based transgenic system was used to generate bone marrow stem cells (BMSC) which stably expressed IDO (IDO-BMSCs). Coculture of IDO-BMSCs with dendritic cells (DC) or T cells was used to evaluate the immunomodulatory effect of IDO-BMSCs. A heterotopic heart transplant model in rats was used to evaluate allograft rejection after IDO-BMSC treatment. Mechanisms of IDO-BMSC-mediated immunosuppression were investigated by evaluating levels of proinflammatory and anti-inflammatory cytokines, and production of Tregs. A significant decrease in DC marker-positive cells and a significant increase in Tregs were observed in IDO-BMSC cocultured. Treatment of transplanted rats with IDO-BMSCs was associated with significantly prolonged graft survival. Compared with the control groups, transplanted animals treated with IDO-BMSCs had a (1) significantly higher ejection fraction and fractional shortening, (2) significantly lower expression of CD86, CD80, and MHCII, and significantly higher expression in CD274, and Tregs, and (3) significantly higher levels of interleukin-10 (IL-10), transforming growth factor beta-1 (TGF-β1), TGF-β2, and TGF-β3, and significantly lower levels of IL-2 and interferon gamma. Our results expand our understanding of the molecular mechanisms underlying suppression of heart allograft rejection via IDO-expressing BMSCs.


Sign in / Sign up

Export Citation Format

Share Document