scholarly journals A measurement method of fifth-generation multiple-input multiple-output antenna based on microwave imaging

2020 ◽  
Vol 16 (6) ◽  
pp. 155014772093714
Author(s):  
Hangyu Chen ◽  
Jingcheng Zhao ◽  
Tao Hong ◽  
Shuli Zheng ◽  
Haohui Hong ◽  
...  

An increase in the quantity and density of antenna elements increases the mismatched failure rate and measurement difficulty of the multiple-input multiple-output. To simplify the measurement method of the S11 parameter utilizing the traditional vector network analyzer, this article proposes a multiple-input multiple-output measurement method based on microwave imaging. The multiple-input multiple-output element was designed, and then the existence of mismatched scattering of the mismatched state through microwave one-dimensional and two-dimensional imaging simulations was verified. A wideband Vivaldi antenna was designed for measurement imaging verification. The research results show that the proposed method is capable of detecting the mismatched scattering of mismatched elements as well as accurately locating the mismatched elements and mismatched position of circuits behind the element, which improves the measurement efficiency.

2020 ◽  
Vol 10 (17) ◽  
pp. 5971 ◽  
Author(s):  
Sven Kuehn ◽  
Serge Pfeifer ◽  
Niels Kuster

In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintaining exposure guidelines for public safety. In this study, we consider frequency range 1 (FR1) and various user scenarios. The estimated dose in hypothetical 5G networks was extrapolated from measurements in one of the Swiss 4G networks and by means of Monte Carlo analysis. The results show that the peak dose is always dominated by an individual’s mobile phone and, in the case of non-users, by the bystanders’ mobile phones. The reduction in cell size and the separation of indoor and outdoor coverage can substantially reduce the total dose by >10 dB. The introduction of higher frequencies in 5G mobile networks, e.g., 3.6 GHz, reduces the specific absorption rate (SAR) in the entire brain by an average of −8 dB, while the SAR in the superficial tissues of the brain remains locally constant, i.e., within ±3 dB. Data from real networks with multiple-input multiple-output (MIMO) were not available; the effect of adaptive beam-forming antennas on the dose will need to be quantitatively revisited when 5G networks are fully established.


Author(s):  
Ravisankar Malladi ◽  
Manoj Kumar Beuria ◽  
Ravi Shankar ◽  
Sudhansu Sekhar Singh

In modern wireless communication scenarios, non-orthogonal multiple access (NOMA) provides high throughput and spectral efficiency for fifth generation (5G) and beyond 5G systems. Traditional NOMA detectors are based on successive interference cancellation (SIC) techniques at both uplink and downlink NOMA transmissions. However, due to imperfect SIC, these detectors are not suitable for defense applications. In this paper, we investigate the 5G multiple-input multiple-output NOMA deep learning technique for defense applications and proposed a learning approach that investigates the communication system’s channel state information automatically and identifies the initial transmission sequences. With the use of the proposed deep neural network, the optimal solution is provided, and performance is much better than the traditional SIC-based NOMA detectors. Through simulations, the analytical outcomes are verified.


2021 ◽  
Vol 11 (18) ◽  
pp. 8684
Author(s):  
Mário Marques da Silva ◽  
Rui Dinis ◽  
Gelson Martins

This article studies the power-ordered Non-Orthogonal Multiple Access (NOMA) techniques associated with Low-Density Parity-Check (LDPC) codes, adopted for use in the fifth generation of cellular communications (5G). Both conventional and cooperative NOMA are studied, associated with Single Carrier with Frequency Domain Equalization (SC-FDE) and massive Multiple-Input Multiple-Output (MIMO). Billions of Internet of Things (IoT) devices are aimed to be incorporated by the Fourth Industrial Revolution, requiring more efficient use of the spectrum. NOMA techniques have the potential to support that goal and represent strong candidates for incorporation into future releases of 5G. This article shows that combined schemes associated with both conventional and cooperative LDPC-coded NOMA achieve good performance while keeping the computational complexity at an acceptable level.


Author(s):  
Dr. Abul Bashar

Artificial intelligence based long term evolution multi in multi output antenna supporting the fifth generation mobile networks is put forth in the paper. The mechanism laid out in paper is devised using the monopole-antenna integrated with the switchable pattern. The long term evolution based multiple input and multiple output antenna is equipped with four antennas and capable of providing a four concurrent data streams quadrupling the theoretical maximum speed of data transfer allowing the base station to convey four diverse signals through four diverse transmit antennas for a single user equipment. The utilization of the long term evolution multiple input multiple output is capable of utilizing the multi-trial broadcasting to offer betterments in the signal performance as well as throughput and spectral efficiency when used along the fifth generation mobile networks. So the paper proposes the artificial intelligence based long term evolution multiple input multiple output four transmit antenna with four diverse signal transmission capacity that is operating in the frequency of 3.501 Gigahertz frequency. The laid out design is evaluated using the Multi-input Multi output signal analyzer to acquire the capacity of the passive conveyance of the various antennas with the diverse combination of patterns. The outcomes observed enables the artificial intelligence antenna to identify the choicest antenna to be integrated in the diverse environments for improving the throughput, signal performance and the data conveyance speed.


2020 ◽  
Author(s):  
Tewelgn Kebede Engda ◽  
Yihenew Wondie ◽  
Johannes Steinbrunn

Abstract A considerable amount of enabling technologies are being explored in the era of fifth generation (5G) mobile system. The dream is to build a wireless network that substantially improves the existing mobile networks in all performance metrics. To address this 5G design targets, massive MIMO (multiple input multiple output) and mmWave (millimeter wave) communication are also candidate technologies. Luckily, in many respects these two technologies share a symbiotic integration. Accordingly, a logical step is to integrate mmWave communications and massive MIMO to form mmWave-massive MIMO which substantially increases user throughput, improve spectral and energy efficiencies, increase the capacity of mobile networks and achieve high multiplexing gains. Thus, this work analyses the concepts, performances, comparison and discussion of these technologies called: massive MIMO, mmWave Communications and mmWave-massive MIMO systems jointly. Besides, outcomes of extensive researches, emerging trends together with their respective benefits, challenges, proposed solutions and their comparative analysis is addressed. The performance of hybrid analog-digital beamforming architecture with a fully digital and analog beamforming techniques are also analyzed. Analytical and simulation results show that the low-complexity hybrid analog-digital precoding achieves all round comparable precoding gains for mmWave-Massive MIMO technology.


2021 ◽  
Author(s):  
Jie Ding ◽  
Mahyar Nemati ◽  
Shiva Pokhrel ◽  
Ok-Sun Park ◽  
Jinho Choi ◽  
...  

<div>Enabling ultra-reliable low-latency communication (URLLC) with stringent requirements for transmitting data packets (e.g., 99.999% reliability and 1 millisecond latency) presents considerable challenges in uplink transmissions. For each packet transmission over dynamically allocated network radio resources, the conventional random access protocols are based on a request- rant scheme. This induces excessive latency and necessitates reliable control signalling, resulting overhead. To address these problems, grant-free (GF) solutions are proposed in the fifth-generation (5G) new radio (NR). In this paper, an overview and vision of the state-of-the-art in enabling GF URLLC are presented. In particular, we first provide a comprehensive review of NR specifications and techniques for URLLC, discuss underlying principles, and highlight impeding issues of enabling GF URLLC. Furthermore, we explain two key phenomena of massive multiple-input multiple-output (mMIMO) (i.e., channel hardening and favorable propagation) and build several deep insights into how celebrated mMIMO features can be exploited to enhance the performance of GF URLLC. Moving further ahead, we examine the potential of cell-free (CF) mMIMO and analyze its distinctive features and benefits over mMIMO to resolve GF URLLC issues. Finally, we identify future research directions and challenges in enabling GF URLLC with CF mMIMO.</div>


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Doae El Hadri ◽  
Alia Zakriti ◽  
Asmaa Zugari ◽  
Mohssine El Ouahabi ◽  
Jamal El Aoufi

This paper presents a compact Multiple Input Multiple Output antenna with high isolation and low envelope correlation (ECC) for fifth-generation applications using spatial diversity technique. The proposed MIMO antenna consists of two single antennas, each having size of 13 × 12.8 mm2, symmetrically arranged next to each other. The single and MIMO antennas are simulated and analyzed. To verify the simulated results, the prototype antennas were fabricated and measured. A good agreement between measurements and simulations is obtained. The proposed antenna covers the 28 GHz band (27.5–28.35 GHz) allocated by the FCC for 5G applications. Moreover, the isolation is more than 35 dB and the ECC is less than 0.0004 at the operating band, which means that the mutual coupling between the two elements is negligible. The MIMO parameters, such as diversity gain (DG), total active reflection coefficient (TARC), realized gain, and efficiency, are also studied. Thus, the results demonstrate that our antenna is suitable for 5G MIMO applications.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2609 ◽  
Author(s):  
Joseph Henry Anajemba ◽  
Yue Tang ◽  
Celestine Iwendi ◽  
Akpesiri Ohwoekevwo ◽  
Gautam Srivastava ◽  
...  

In recent times, security and privacy at the physical (PHY) layer has been a major issue of several communication technologies which comprise the internet of things (IoT) and mostly, the emerging fifth-generation (5G) cellular network. The most real-world PHY security challenge stems from the fact that the passive eavesdropper’s information is unavailable to the genuine source and destination (transmitter/receiver) nodes in the network. Without this information, it is difficult to optimize the broadcasting parameters. Therefore, in this research, we propose an efficient sequential convex estimation optimization (SCEO) algorithm to mitigate this challenge and improve the security of physical layer (PHY) in a three-node wireless communication network. The results of our experiments indicate that by using the SCEO algorithm, an optimal performance and enhanced convergence is achieved in the transmission. However, considering possible security challenges envisaged when a multiple eavesdropper is active in a network, we expanded our research to develop a swift privacy rate optimization algorithm for a multiple-input, multiple-output, multiple-eavesdropper (MIMOME) scenario as it is applicable to security in IoT and 5G technologies. The result of the investigation show that the algorithm executes significantly with minimal complexity when compared with nonoptimal parameters. We further employed the use of rate constraint together with self-interference of the full-duplex transmission at the receiving node, which makes the performance of our technique outstanding when compared with previous studies.


Sign in / Sign up

Export Citation Format

Share Document