scholarly journals The impacts of weak links on topology discovery process in large-scale wireless multi-hop networks

2020 ◽  
Vol 16 (11) ◽  
pp. 155014772097452
Author(s):  
Liao Wenxing ◽  
Shi Xiaofei ◽  
Chen Xinying

In wireless multi-hop networks, especially large-scale wireless multi-hop networks, obtaining the network topology is of vital significance. In fact, in both proactive and reactive routing protocols, before establishing an appropriate end-to-end route, the source node needs to obtain the global or local topology. Our previous research has studied the impacts of weak links on reactive routing protocols, which can also be considered as local topology discovery process. In this article, in order to get insight of the impacts of weak links on topology discovery process, especially the global topology discovery on which the proactive routing protocols rely, we apply a Markov chain to model the most common used topology discovery process in large-scale wireless multi-hop networks. Considering the fading characteristics of wireless channel, we analyze the impacts of weak links on topology discovery algorithms. Simulation and theoretical results show that, with the increase in the network scale, the weak links have great impacts on the stability and even on the feasibility of wireless multi-hop networks.

Author(s):  
Abdeldime Mohamed ◽  
Tagreed Yahya ◽  
Chen Peng

Vehicular Adhoc Network (VANET), is an emerging technology that holds the opportunity to create potential applications that directly impact peoples' lives, traffic management, and infotainment services. Understanding VANET applications and the available routing protocols can help to infer the most suitable protocols that satisfy VANET application requirements. This paper develops a systematic classification methodology to classify VANET applications from a routing perspective, each application class has different network requirements which are laid down by VANET Projects conducted in different countries. Some of these requirements are related to the routing aspects and need to be satisfied by the selected routing strategies (proactive and reactive). The paper identifies routing strategies performance metrics related to each application class requirement, to efficiently guide the development of these routing strategies towards guaranteeing satisfactory performance for the applications under a wide variety of realistic VANET scenarios. It is also worth mentioning that minimum delay is a requirement needed by time and event-driven application classes. However, high reliability is a requirement needed by on-demand applications. The paper aims to provide a comparative study on the performance of routing strategies in different VANET application classes, to identify which routing strategies have better performance in specific VANET applications class. End-to-end delay is employed as a performance metric to evaluate the short delay requirement, while, the Routing Overhead (RO) is used to assess the reliability requirement. Simulation results showed that proactive routing protocol has a lower delay, which means that it is suitable for delay-sensitive applications such as time-driven and event-driven applications. The result also showed that the reactive routing protocol outperforms the proactive routing protocol in terms of RO, which means that reactive routing protocols can be nominated as proper routing strategies to satisfy the reliability requirement of the On-demand driven applications.


Author(s):  
Viktor Denkovski ◽  
Biljana Stojcevska ◽  
Toni Dovenski ◽  
Veno Pachovski ◽  
Adrijan Bozinovski

This paper investigates the performance of reactive and proactive routing protocols in a wireless sensor network for targeted enviroment. AODV and DSR are chosen as representatives for the reactive routing protocols and DSDV for the proactive. A wireless sensor network application for farm cattle monitoring is created. The proposed solution meets a desired requirement for periodically observing the condition of each individual animal, processing the gathered data and reporting it to the farmer. However, an implementation of a WSN needs to meet particular technical challenges before it can be suitable to be applied in cattle management. For this, multiple scenarios are presented with various situations to evaluate the performance of routing protocols in the WSNs. Finally, the results concerning data transportation from the mounted sensory devices to the mobile nodes are discussed and analyzed.


2014 ◽  
Vol 3 (1) ◽  
pp. 17-21
Author(s):  
Awantika . ◽  
◽  
Ashok Kumar ◽  
Hardwari Lal Mandoria ◽  
◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 757
Author(s):  
Huiyi Shang ◽  
Danni Yang ◽  
Dairong Qiao ◽  
Hui Xu ◽  
Yi Cao

Levan has wide applications in chemical, cosmetic, pharmaceutical and food industries. The free levansucrase is usually used in the biosynthesis of levan, but the poor reusability and low stability of free levansucrase have limited its large-scale use. To address this problem, the surface-displayed levansucrase in Saccharomyces cerevisiae were generated and evaluated in this study. The levansucrase from Zymomonas mobilis was displayed on the cell surface of Saccharomyces cerevisiae EBY100 using a various yeast surface display platform. The N-terminal fusion partner is based on a-agglutinin, and the C-terminal one is Flo1p. The yield of levan produced by these two whole-cell biocatalysts reaches 26 g/L and 34 g/L in 24 h, respectively. Meanwhile, the stability of the surface-displayed levansucrases is significantly enhanced. After six reuses, these two biocatalysts retained over 50% and 60% of their initial activities, respectively. Furthermore, the molecular weight and polydispersity test of the products suggested that the whole-cell biocatalyst of levansucrase displayed by Flo1p has more potentials in the production of levan with low molecular weight which is critical in certain applications. In conclusion, our method not only enable the possibility to reuse the enzyme, but also improves the stability of the enzyme.


Genetics ◽  
1974 ◽  
Vol 76 (2) ◽  
pp. 289-299
Author(s):  
Margaret McCarron ◽  
William Gelbart ◽  
Arthur Chovnick

ABSTRACT A convenient method is described for the intracistronic mapping of genetic sites responsible for electrophoretic variation of a specific protein in Drosophila melanogaster. A number of wild-type isoalleles of the rosy locus have been isolated which are associated with the production of electrophoretically distinguishable xanthine dehydrogenases. Large-scale recombination experiments were carried out involving null enzyme mutants induced on electrophoretically distinct wild-type isoalleles, the genetic basis for which is followed as a nonselective marker in the cross. Additionally, a large-scale recombination experiment was carried out involving null enzyme rosy mutants induced on the same wild-type isoallele. Examination of the electrophoretic character of crossover and convertant products recovered from the latter experiment revealed that all exhibited the same parental electrophoretic character. In addition to documenting the stability of the xanthine dehydrogenase electrophoretic character, this observation argues against a special mutagenesis hypothesis to explain conversions resulting from allele recombination studies.


2021 ◽  
Vol 11 (5) ◽  
pp. 2098
Author(s):  
Heyi Wei ◽  
Wenhua Jiang ◽  
Xuejun Liu ◽  
Bo Huang

Knowledge of the sunshine requirements of landscape plants is important information for the adaptive selection and configuration of plants for urban greening, and is also a basic attribute of plant databases. In the existing studies, the light compensation point (LCP) and light saturation point (LSP) have been commonly used to indicate the shade tolerance for a specific plant; however, these values are difficult to adopt in practice because the landscape architect does not always know what range of solar radiation is the best for maintaining plant health, i.e., normal growth and reproduction. In this paper, to bridge the gap, we present a novel digital framework to predict the sunshine requirements of landscape plants. First, the research introduces the proposed framework, which is composed of a black-box model, solar radiation simulation, and a health standard system for plants. Then, the data fitting between solar radiation and plant growth response is used to obtain the value of solar radiation at different health levels. Finally, we adopt the LI-6400XT Portable Photosynthetic System (Li-Cor Inc., Lincoln, NE, USA) to verify the stability and accuracy of the digital framework through 15 landscape plant species of a residential area in the city of Wuhan, China, and also compared and analyzed the results of other researchers on the same plant species. The results show that the digital framework can robustly obtain the values of the healthy, sub-healthy, and unhealthy levels for the 15 landscape plant species. The purpose of this study is to provide an efficient forecasting tool for large-scale surveys of plant sunshine requirements. The proposed framework will be beneficial for the adaptive selection and configuration of urban plants and will facilitate the construction of landscape plant databases in future studies.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xianyue Li ◽  
Yufei Pang ◽  
Chenxia Zhao ◽  
Yang Liu ◽  
Qingzhen Dong

AbstractGraph partition is a classical combinatorial optimization and graph theory problem, and it has a lot of applications, such as scientific computing, VLSI design and clustering etc. In this paper, we study the partition problem on large scale directed graphs under a new objective function, a new instance of graph partition problem. We firstly propose the modeling of this problem, then design an algorithm based on multi-level strategy and recursive partition method, and finally do a lot of simulation experiments. The experimental results verify the stability of our algorithm and show that our algorithm has the same good performance as METIS. In addition, our algorithm is better than METIS on unbalanced ratio.


Sign in / Sign up

Export Citation Format

Share Document