scholarly journals Outcome in Acute Stroke with Different Intra-Arterial Infusion Rate of Urokinase on Thrombolysis

2010 ◽  
Vol 16 (3) ◽  
pp. 290-296 ◽  
Author(s):  
X. Gan ◽  
Y. Luo ◽  
F. Ling ◽  
X. Ji ◽  
J. Chen ◽  
...  

Intra-arterial infusion of urokinase (UK) has been widely used. However, the optimal infusion rate of the reagent has never been determined. This was investigated in the acute stage of middle cerebral artery (MCA) embolism in the present study. Sprague Dawley male rats (n=43) were randomly divided into sham-operation and five ischemic groups with urokinase administration at different infusion rates or without urokinase administration. Ischemia was induced with MCA embolism. Two hours after embolism, total urokinase (urokinase, 170,000U/kg) was given in groups A,B,C and D (n=8 each) at different rates: 1,000 U (0.03 ml/min) per minute, 4,000U (0.12 ml/min), 10,000U (0.30 ml/min), and 16,000U (0.48 ml/min), respectively. Group E received normal saline at a rate of 0.48 ml/min. The sham-operation group (no embolism) received urokinase at (170,000U/kg, 1.5 ml, 16,000 U/min). During ischemia and thrombolysis, regional cerebral blood flow (CBF) was monitored by laser Doppler flowmetry. The neurological deficits, infarct volumes and mortalities in each group were determined. The CBF in ischemic hemisphere were significantly (p<0.05) decreased after embolism in groups A!E at similar levels (27.32±8.20% to 34.71±6.84%). After different treatments, in group B 4,000U/min infusion of UK induced the best reperfusion, the least neurological deficits and infarct volume, as well as the least mortality and lowest incidence of hemorrhage. The effect of intra-artery thrombolysis of urokinase was related to the infusion rate. Our study demonstrated an optimal infusion rate at 4,000U/min, suggesting relatively low levels of infusion are better able to improve brain reperfusion and reduce brain injury after stroke.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shi Shu ◽  
Chun-Ming Li ◽  
Yan-Li You ◽  
Xiao-Lu Qian ◽  
Shuang Zhou ◽  
...  

Background. The therapeutic mechanisms of cerebral ischemia treatment by acupuncture are yet not well addressed.Objective. We investigated the effects of electroacupuncture (EA) at GV26 observing the expression of autophagy-related proteins Beclin-1 and LC3B and proportion of apoptotic cells and Bcl-2 positive cells in MCAO/R model rats.Methods. Sprague-Dawley (SD) male rats were randomly assigned to 7 groups: model groups (M6h, M24h, and M72h), EA treatment groups (T6h, T24h, and T72h), and sham operation group (S). Neurological deficit and cerebral infarction volume were measured to assess the improvement effect, while the expression of Beclin-1 and LC3B and proportion of Tunel-positive and Bcl-2 positive cells were examined to explore EA effect on autophagy and apoptosis.Results. EA significantly decreased neurological deficit scores and the volume of cerebral infarction. Beclin-1 was significantly decreased in T24h, while LC3B-II/LC3B-I ratio markedly reduced in 6th hour. EA groups markedly reduced the number of Tunel positive cells, especially in T24h. Meanwhile, the number of Bcl-2 positive cells obviously increased after EA treatment, especially in T6h and T24h.Conclusions. The alleviation of inadequate autophagy and apoptosis may be a key mechanism involved in the reflex regulation of EA at GV26 to treat cerebral ischemia.


Author(s):  
Xiaokun Geng ◽  
Qingzhu Wang ◽  
Hangil Lee ◽  
Christian Huber ◽  
Melissa Wills ◽  
...  

AbstractThere remain debates on neuroprotection and rehabilitation techniques for acute ischemic stroke patients. Therapeutic physical exercise following stroke has shown promise but is challenging to apply clinically. Ischemic conditioning, which has several clinical advantages, is a potential neuroprotective method for stroke rehabilitation that is less understood. In the present study, the rehabilitative properties and mechanisms of physical exercise and remote ischemic postconditioning (RIPostC) after stroke were compared and determined. A total of 248 adult male Sprague-Dawley rats were divided into five groups: (1) sham, (2) stroke, (3) stroke with intense treadmill exercise, (4) stroke with mild treadmill exercise, and (5) stroke with RIPostC. Focal ischemia was evaluated by infarct volume and neurological deficit. Long-term functional outcomes were represented through neurobehavioral function tests: adhesive removal, beam balance, forelimb placing, grid walk, rota-rod, and Morris water maze. To further understand the mechanisms underlying neurorehabilitation and verify the presence thereof, we measured mRNA and protein levels of neuroplasticity factors, synaptic proteins, angiogenesis factors, and regulation molecules, including HIF-1α, BDNF, TrkB, and CREB. The key role of HIF-1α was elucidated by using the inhibitor, YC-1. Both exercise intensities and RIPostC significantly decreased infarct volumes and neurological deficits and outperformed the stroke group in the neurobehavioral function tests. All treatment groups showed significant increases in mRNA and protein expression levels of the target molecules for neurogenesis, synaptogenesis, and angiogenesis, with intermittent further increases in the RIPostC group. HIF-1α inhibition nullified most beneficial effects and indicative molecule expressions, including HIF-1α, BDNF, TrkB, and CREB, in both procedures. RIPostC is equally, or superiorly, effective in inducing neuroprotection and rehabilitation compared to exercise in ischemic rats. HIF-1α likely plays an important role in the efficacy of neuroplasticity conditioning, possibly through HIF-1α/BDNF/TrkB/CREB regulation.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Christopher Sy ◽  
Xiaokun Geng ◽  
Paul Fu ◽  
Changya Peng ◽  
Vance Fredrickson ◽  
...  

Objectives: Normobaric oxygenation (NBO) has been reported to be neuroprotective against acute cerebral ischemia. Recently, a clinical trial was terminated because beneficial outcomes were not definitive. Our recent study ( Stroke. 2012 43(1):205-10 ) demonstrated a strong neuroprotective effect induced by acute administration of ethanol (EtOH) at 1.5g/kg. In this study, we assessed the therapeutic influence of EtOH in combination with NBO. Methods: Sprague-Dawley rats were subjected to right middle cerebral artery occlusion for 2h. Ischemic animals received either an intraperitoneal injection of EtOH (1.0g/kg), a course of NBO (100% for 2h), or a combination of both immediately prior to reperfusion onset. Brain injury was determined by infarct volume and behavioral outcomes at 48h post-reperfusion. Metabolic dysfunction was investigated by assessing ADP/ATP ratios, reactive oxygen species (ROS) levels, NADPH oxidase (NOX) activity, and protein expression of NOX subunits (p47 phox , gp91 phox , and p67 phox ), as well as the protein expression and enzyme activity of pyruvate dehydrogenase (PDH), at both 3h and 24h after reperfusion. Results: Combination therapy led to a significant decrease in infarct volumes (Saline: 48±4%, EtOH: 38±3%, NBO: 37±4%, Combination: 19±3% ) and in neurological deficits (Belayev Scale 0-12, Saline: 8.4±0.7; EtOH: 6.5±0.7; NBO: 6.4±0.6; Combination: 4.4±0.3 ). At 3h and 24h post-reperfusion the decrease in ADP/ATP ratio was significantly enhanced, reflecting a preservation of cellular energy. A greater decrease in NOX activity and protein expression was observed, in association with decreased ROS levels, suggesting that improved glycolysis may contribute to neuroprotection. PDH activity and protein expression was dramatically increased, making the facilitation of aerobic metabolism a probable mechanism for preserving cellular ATP. Conclusions: Our findings demonstrate that a synergistic relationship exists between EtOH and NBO. Both are promising neuroprotective agents when used together, even at low doses. Moreover, both are inexpensive, widely available, easy to administer, and have little side effects. Thus, combination therapy could be an effective and efficient approach to future stroke treatments.


2017 ◽  
Vol 35 (3) ◽  
pp. 208-214 ◽  
Author(s):  
Shulan Ma ◽  
Dongju Li ◽  
Yi Feng ◽  
Jianwei Jiang ◽  
Bo Shen

Aim To observe the effects of electroacupuncture (EA) on uterine morphology and expression of oestrogen receptor (ER) α and β in ovariectomised (OVX) rats. Methods Thirty female Sprague-Dawley rats with regular 4-day oestrus cycles were divided into a sham operation group (Control, n=10) and two OVX groups that remained untreated (OVX group, n=10) or received EA treatment (OVX+EA group, n=10). In the latter group, EA was applied at CV4, CV3, SP6 and bilateral Zigong (30 min per day) for 3 days. The effects of EA on uterine morphology were observed by H&E staining. Quantitative real-time reverse transcription-PCR (qRT-PCR) and Western blotting were used to measure ERα and ERβ mRNA and protein expression, respectively. Results Relative to the (untreated) OVX group, EA treatment significantly increased the uterine wet weight to body weight (UWW/BW) ratio (0.47±0.04 vs 0.31±0.03 g/kg, p=0.04), and myometrial thickness (109.39±10.71 vs 60.81±8.1 μm, p=0.016) of OVX rats. Similarly, the total number of endometrial glands per cross section and endometrial thickness in the OVX +EA group was significantly increased compared to the (untreated) OVX group. EA treatment also increased protein (but not mRNA) expression of both ERα and ERβ in the uteri of OVX rats. Conclusions This study has demonstrated that EA treatment decreases uterine atrophy in OVX rats. This unique effect of EA on the uterus may be due to upregulation of serum levels of E2 and differential regulation of sex steroid receptors ERα and ERβ.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 330-330
Author(s):  
Anil Chauhan ◽  
Mohammad M Khan ◽  
Chintan Gandhi ◽  
Neelam Chauhan ◽  
Asgar Zaheer ◽  
...  

Abstract Abstract 330 Background: Fibronectin (FN) is a dimeric glycoprotein that plays an important role in several cellular processes, such as embryogenesis, malignancy, hemostasis, wound healing and maintenance of tissue integrity. FN is a ligand for many members of the integrin family (e.g. αIIbβ3, α5β1, α4β1, α9β1, αvβ3 and αvβ5) and also binds to thrombosis-related proteins including heparin, collagen and fibrin. FN generates protein diversity as a consequence of alternative processing of a single primary transcript. Two forms of FN exist; soluble plasma FN (pFN), which lacks the alternatively-spliced Extra Domain A (EDA); and insoluble cellular FN (cFN), which contains EDA. FN containing EDA (EDA+FN) is normally absent in plasma of human and mouse but EDA+FN has been found in patients with vascular injury secondary to vasculitis, sepsis, acute major trauma or ischemic stroke. We tested the hypothesis that elevated levels of plasma EDA+FN increase brain injury in an experimental model of ischemic stroke in mice. Model and Method: We used two genetically modified mouse strains: EDA+/+ mice contain optimized spliced sites at both splicing junctions of the EDA exon and constitutively express only EDA+FN, whereas EDA-/- mice contain an EDA-null allele of the EDA exon and express only FN lacking EDA. Control EDAwt/wt mice contain the wild-type FN allele. Transient focal cerebral ischemia was induced by 60 minutes of occlusion of the right middle cerebral artery with a 7.0 siliconized filament in male mice (8-10 weeks in age). Mice were anesthetized with 1–1.5% isoflurane mixed with medical air. Body temperature was maintained at 37°C ± 1.0 using a heating pad. Laser Doppler flowmetry was used to confirm induction of ischemia and reperfusion. At 23 hours after MCAO, mice were evaluated for neurological deficits as a functional outcome and were sacrificed for quantification of infarct volume. For morphometric measurement eight 1 mm coronal sections were stained with 2% triphenyl-2, 3, 4-tetrazolium-chloride (TTC). Sections were digitalized and infarct areas were measured blindly using NIS elements. Result: In EDA+/+ mice the percentage of infarct volume (mean ± SEM: 37.25 ± 4.11, n= 12,) in the ipsilateral (ischemic) hemisphere was increased by approximately two-fold compared to EDA wt/wt mice (mean ± SEM: 22.33 ± 3.39, n=11; P< 0.05, ANOVA) or EDA-/- mice (mean ± SEM: 21.72 ± 2.94, n=9). Regional cerebral blood flow during ischemia was not different among groups as assessed by laser Doppler flowmetry. The percentage increase in infarct volume in the EDA+/+ mice correlated well with severe neurological deficits (motor-deficit assessed by a four-point neurological score scale) compared to EDA wt/wt or EDA-/- mice. Because both thrombosis and inflammation contributes to brain injury during ischemic stroke, we investigated the time to form an occlusive thrombus in ferric-chloride carotid artery injury model by intravital microscopy. EDA+/+ mice demonstrated significantly faster time to occlusion (mean ± SEM: 12.35 ± 1.51 n=12,) compared to EDAwt/wt (Mean ± SEM: 17.27 ± 1.72 min, n=13, P<0.05, ANOVA) or EDA-/- (Mean ± SEM: 15.61 ± 1.76, n=11) mice. Additionally, the inflammatory response in the ischemic region was increased by two fold in EDA+/+ mice compared to EDA wt/wt and EDA-/- mice as sensed by myeloperoxidase activity and immunohistochemical analysis of neutrophils. Conclusion: EDA-containing FN is pro-thrombotic and pro-inflammatory, and aggravates ischemic brain injury in an experimental model of stroke in mice. The presence of EDA+FN in plasma may be a risk factor for vascular injury secondary to ischemic stroke. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiangfeng Liu ◽  
Huijun Kang ◽  
Jiangfeng Lu ◽  
Yike Dai ◽  
Fei Wang

Abstract Background Poor osseointegration is the key reason for implant failure after arthroplasty,whether under osteoporotic or normal bone conditions. To date, osseointegration remains a major challenge. Recent studies have shown that deferoxamine (DFO) can accelerate osteogenesis by activating the hypoxia signaling pathway. The purpose of this study was to test the following hypothesis: after knee replacement, intra-articular injection of DFO will promote osteogenesis and osseointegration with a 3D printed titanium prosthesis in the bones of osteoporotic rats. Materials and methods Ninety female Sprague–Dawley rats were used for the experiment. Ten rats were used to confirm the successful establishment of the osteoporosis model: five rats in the sham operation group and five rats in the ovariectomy group. After ovariectomy and knee arthroplasty were performed, the remaining 80 rats were randomly divided into DFO and control groups (n = 40 per group). The two groups were treated by intraarticular injection of DFO and saline respectively. After 2 weeks, polymerase chain reaction (PCR) and immunohistochemistry were used to evaluate the levels of HIF-1a, VEGF, and CD31. HIF-1a and VEGF have been shown to promote angiogenesis and bone regeneration, and CD31 is an important marker of angiogenesis. After 12 weeks, the specimens were examined by micro-computed tomography (micro-CT), biomechanics, and histopathology to evaluate osteogenesis and osseointegration. Results The results of PCR showed that the mRNA levels of VEGF and CD31 in the DFO group were significantly higher than those in the control group. The immunohistochemistry results indicated that positive cell expression of HIF-1a, VEGF, and CD31 in the DFO group was also higher. Compared with the control group, the micro-CT parameters of BMD, BV/TV, TB. N, and TB. Th were significantly higher. The maximal pull-out force and the bone-to-implant contact value were also higher. Conclusions The local administration of DFO, which is used to activate the HIF-1a signaling pathway, can promote osteogenesis and osseointegration with a prosthesis in osteoporotic bone.


2019 ◽  
Author(s):  
Hong Zeng ◽  
Bao-fu Yu ◽  
Nan Liu ◽  
Yan-yan Yang ◽  
Hua-yi Xing ◽  
...  

Abstract Abstract Background Endogenous α-synuclein (α-Syn) is involved in many pathophysiological processes in the secondary injury stage after acute spinal cord injury (SCI), and the mechanism governing these functions has not been thoroughly elucidated to date. This research aims to characterize the effect of α-Syn knockdown on transcriptional levels after SCI and to determine the mechanisms underlying α-Syn activity based on RNA-seq. Result The establishment of a rat model of lentiviral vector-mediated knockdown of α-Syn in Sprague-Dawley rats with T3 spinal cord contusion. The results of the RNA-SEQ analysis showed that there were 191 differentially expressed genes (DEGs) between the SCI group and the LV_SCI group, and 96 DEGs in the LV_SCI group compared with the sham operation group (CON group). The top 20 biological transition terms were identified by Gene ontology (GO) analysis. The Kyoto Gene and Genomic Encyclopedia (KEGG) analysis showed that the LV_SCI group significantly up-regulated the cholinergic synaptic pathway and the neuroactive ligand receptor interaction signaling pathway. Enriched chord analysis analyzes key genes. Further cluster analysis, gene and protein interaction network analysis showed that Chrm2 and Chrnb2 together observed the LV_SCI group to promote the proliferation of Chrm2 and Chrnb2 and the neurogenesis of the injury site by immunofluorescence. Further by subcellular localization, the LV_SCI group enhanced the expression of Chrnb2 at the cell membrane and cell junction. Conclusion Knockdown of α-synuclein after spinal cord injury enhance motor function and promote neurogenesis probably through enhancing cholinergic signaling pathways and neuroreceptor interactions. This study not only further clarifies the understanding of the mechanism of knockdown of α-synuclein on SCI but also helps to guide the treatment strategy for SCI.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhenzhen Zhong ◽  
Ping Xu ◽  
Jun Wen ◽  
Xiangdong Li ◽  
Xiaobo Zhang

Objective. The aim was to investigate the role that enriched environment (EE) plays in the regulation of inflammation in cerebral infarction (CI) lesions and further explore the relationship between this regulation and dendritic cells (DCs). Methods. 72 Sprague-Dawley rats were randomly divided into sham operation group (CON group, n = 24 ) and CI model group ( n = 48 ). On completion of the establishment of CI rat models by Longa’s method, rats in the models group were further assigned to standard environment group (NC group, n = 24 ) and EE group ( n = 24 ). HE staining was utilized for evaluation of neuronal injury in the lesions. The number of CD74- and integrin αE-positive cells was detected by immunofluorescence. The expression of the IL-1β, IL-6, and TNF-α in the brain tissue and serum of rats was measured by immunohistochemistry and ELISA, respectively. Results. In comparison with the CON group, the NC and EE groups showed significant increases in neuronal injury, CD74- and Integrin αE-positive cells, DC content, as well as IL-1β, IL-6, and TNF-α expression in brain tissue and serum. According to the further comparison between the NC group and EE group, the latter showed decreases in each indicator, and these decreases were in a time-dependent manner. Conclusion. EE avoids the accumulation of DCs in the lesions and reduces the contents of IL-1β, IL-6, and TNF-α, consequently promoting the recovery of CI. And better recovery results can be obtained through increasing the time to stay in EE.


2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Chengren Gou ◽  
Tong Liu ◽  
Zongping Chen ◽  
Zidong Zhou ◽  
Tao Song ◽  
...  

Abstract Background The ischiocavernosus muscle (ICM) encompasses a pair of short pinnate muscles attached to the pelvic ring. The ICM begins at the ischial tuberosity and ends at the crus of the penis while covering the surface of the crus. According to the traditional view, the contraction of the ICM plays an auxiliary role in penile erection. However, we have previously shown that the ICM plays an important role in penile erection through an indirect method of diagnosing erectile dysfunction (ED) caused by ICM injury by observing the infertility of paired female rats. Since intracavernosal pressure (ICP) is the current gold standard for diagnosing ED, this study aimed to amputate unilaterally/bilaterally the ICM to establish an ED model by detecting the ICP, recording the infertility of matching female rats, and comparing the two methods. Results Forty sexually mature adult male rats were selected and randomly divided into the following groups: the control group (n = 10), sham operation group (n = 10), unilateral ischiocavernosus muscle (Uni-ICM) amputation group (n = 10), and bilateral ischiocavernosus muscle (Bi-ICM) amputation group (n = 10). Eighty female reproductive rats were randomly assigned to the above groups at a ratio of 2:1. We evaluated the time to conception for the paired female rats and the effects of unilateral/bilateral severing of the ICM on erectile function. The results showed that the baseline and maximum intracavernosal pressure (ICP) in the control group, sham operation group, Uni-ICM amputation group, and Bi-ICM amputation group were 17.44±2.50 mmHg and 93.51±10.78 mmHg, 17.81±2.81 mmHg and 95.07±10.40 mmHg, 16.73±2.11 mmHg and 83.49±12.38 mmHg, and 14.78±2.78 mmHg and 33.57±6.72 mmHg, respectively, immediately postsurgery. The max ICP in the Bi-ICM amputation group was lower than that in the remaining three groups (all P<0.05). The pregnancy rates were 100, 100, 90, and 0% in the control group, sham operation group, Uni-ICM amputation group, and the Bi-ICM amputation group, respectively. The pregnancy rate in the Bi-ICM amputation group was significantly lower than that in the remaining groups (all P<0.05). The time to conception was approximately 7–10 days later in the Uni-ICM amputation group than in the control and sham groups (all P<0.05). Conclusions Male rats undergoing Bi-ICM amputation may develop permanent ED, which affects their fertility. In contrast, rats undergoing Uni-ICM amputation may experience transient ED.


1997 ◽  
Vol 272 (3) ◽  
pp. H1401-H1405 ◽  
Author(s):  
Z. Huang ◽  
K. Chen ◽  
P. L. Huang ◽  
S. P. Finklestein ◽  
M. A. Moskowitz

Genetically engineered mice deficient in the expression of type III nitric oxide synthase (NOS) [endothelial NOS (eNOS)] were used to decipher the importance of nitric oxide (NO)-dependent augmentation of regional cerebral blood flow (rCBF) to infarct volume reduction following basic fibroblast growth factor (bFGF) infusion during acute middle cerebral artery (MCA) occlusion. We have shown previously that intravenously administered bFGF reduces infarct volume following MCA occlusion in rats and that bFGF dilates cerebral pial arterioles by NO-dependent mechanisms. Halothane-anesthetized eNOS knockout and wild-type mice were subjected to permanent MCA occlusion by intraluminal filament for 24 h. bFGF (100 microg x kg(-1) x h(-1)) was infused intravenously for 2 h, beginning 15 min after the onset of occlusion. Infarct volume was reduced from 119 +/- 8 to 93 +/- 4 mm3 (22% reduction, P < 0.05) or from 102 +/- 9 to 77 +/- 6 mm3 (24% reduction, P < 0.05) in eNOS knockout or wild-type mice, respectively (means +/- SE; n = 10 per group), and neurological deficits were also significantly reduced. Although bFGF infusion caused a 27% increase in rCBF and a 17% reduction in vascular resistance in the infarct margin of wild-type animals as measured by laser Doppler flowmetry, bFGF did not enhance rCBF in the infarct margin of eNOS mutant mice. These data indicate that intravenous bFGF reduces infarct volume following focal ischemia by mechanisms that are largely blood flow independent.


Sign in / Sign up

Export Citation Format

Share Document