scholarly journals Sensitivity analysis of nuclear main pump annular casing tongue blend

2017 ◽  
Vol 9 (7) ◽  
pp. 168781401770659 ◽  
Author(s):  
Xiaorui Cheng ◽  
Wenrui Bao ◽  
Li Fu ◽  
Xiaoting Ye

Based on the Reynolds-averaged Navier–Stokes equations of relative coordinates and the RNG k-ε turbulence model, using our SIMPLE algorithm, we performed numerical simulations for an AP1000 nuclear main pump model with water as the medium. By changing the size of the tongue blend in the annular casing, seven different schemes were designed. Three-dimensional numerical simulations were conducted for the flow within the pump under various settings, and the flow characteristics of the annular casing using different tongue blends were obtained. The results show that for different operating conditions, there is a specific tongue blend that optimizes pump performance. Based on the calculation results, a larger tongue blend leads to a larger flow rate. Off-design conditions caused flow instability, which in turn caused the tongue blend to have a certain impact on the performance of the impeller. However, the performance of the pump was not primarily affected by changes in the impeller performance, but was instead affected by the performance of the annular casing, which was itself affected by tongue blend. When changing the tongue blend, the change in static pressure and total pressure of the annular casing was larger under the condition of 0.6 Qd and was smaller under the conditions of 1.0 Qd and 1.4 Qd. The turbulent kinetic energy in the annular casing changed mainly in the tongue impact zone and outlet diffuser under the condition of 1.0 Qd; furthermore, the turbulent kinetic energy in the whole of the annular casing demonstrated significant changes under the conditions of 0.6 Qd and 1.4 Qd.

2018 ◽  
Vol 8 (9) ◽  
pp. 1413 ◽  
Author(s):  
Dan Yao ◽  
Kwongi Lee ◽  
Minho Ha ◽  
Cheolung Cheong ◽  
Inhiug Lee

A new pump, called the hybrid airlift-jet pump, is developed by reinforcing the advantages and minimizing the demerits of airlift and jet pumps. First, a basic design of the hybrid airlift-jet pump is schematically presented. Subsequently, its performance characteristics are numerically investigated by varying the operating conditions of the airlift and jet parts in the hybrid pump. The compressible unsteady Reynolds-averaged Navier-Stokes equations, combined with the homogeneous mixture model for multiphase flow, are used as the governing equations for the two-phase flow in the hybrid pump. The pressure-based methods combined with the Pressure-Implicit with Splitting of Operators (PISO) algorithm are used as the computational fluid dynamics techniques. The validity of the present numerical methods is confirmed by comparing the predicted mass flow rate with the measured ones. In total, 18 simulation cases that are designed to represent the various operating conditions of the hybrid pump are investigated: eight of these cases belong to the operating conditions of only the jet part with different air and water inlet boundary conditions, and the remaining ten cases belong to the operating conditions of both the airlift and jet parts with different air and water inlet boundary conditions. The mass flow rate and the efficiency are compared for each case. For further investigation into the detailed flow characteristics, the pressure and velocity distributions of the mixture in a primary pipe are compared. Furthermore, a periodic fluctuation of the water flow in the mass flow rate is found and analyzed. Our results show that the performance of the jet or airlift pump can be enhanced by combining the operating principles of two pumps into the hybrid airlift-jet pump, newly proposed in the present study.


2009 ◽  
Vol 19 (07) ◽  
pp. 1139-1183 ◽  
Author(s):  
CHRISTINE BERNARDI ◽  
TOMÁS CHACÓN REBOLLO ◽  
FRÉDÉRIC HECHT ◽  
ROGER LEWANDOWSKI

We consider the finite element discretization of the Navier–Stokes equations locally coupled with the equation for the turbulent kinetic energy through an eddy viscosity. We prove a posteriori error estimates which allow to automatically determine the zone where the turbulent kinetic energy must be inserted in the Navier–Stokes equations and also to perform mesh adaptivity in order to optimize the discretization of these equations. Numerical results confirm the interest of such an approach.


Author(s):  
Mou-jin Zhang ◽  
Chuan-gang Gu ◽  
Yong-miao Miao

The complex three-dimensional flow field in a centrifugal impeller with low speed is studied in this paper. Coupled with high–Reynolds–number k–ε turbulence model, the fully three–dimensional Reynolds averaged Navier–Stokes equations are solved. The Semi–Implicit Method for Pressure–Linked Equations (SIMPLE) algorithm is used. And the non–staggered grid arrangement is also used. The computed results are compared with the available experimental data. The comparison shows good agreement.


2015 ◽  
Vol 65 (4) ◽  
pp. 261 ◽  
Author(s):  
M.S.R. Chandra Murthy ◽  
Debasis Chakraborty

<p>Computational fluid dynamics methodology was used in characterising jet vane based thrust vector control systems of tactical missiles. Three-dimensional Reynolds Averaged Navier-Stokes equations were solved along with two-equation turbulence model for different operating conditions. Nonlinear regression analysis was applied to the detailed CFD database to evolve a mathematical model for the thrust vector control system. The developed model was validated with series of ground based 6-Component static tests. The proven methodology is applied toa new configuration.</p><p><strong>Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 261-264, DOI: http://dx.doi.org/10.14429/dsj.65.7960</strong></p>


2016 ◽  
Author(s):  
Ching-Piao Tsai ◽  
Ying-Chi Chen ◽  
Tri Octaviani Sihombing ◽  
Chang Lin

Abstract. A coupled wave-vegetation simulation is presented for the moving effect of the coastal vegetation on tsunami wave height damping. The problem is idealized by solitary wave propagating on a group of emergent cylinders. The numerical model is based on general Reynolds-averaged Navier-Stokes equations associated with renormalization group turbulent closure model by using volume of fluid technique. The general moving object (GMO) model developed in CFD code Flow-3D is applied to simulate the coupled motion of vegetation with wave dynamically. The damping of wave height and the turbulent kinetic energy dissipation as waves passed over both moving and stationary cylinders are discussed. As comparing with the stationary cylinders, it obtains markedly less wave height damping and turbulent kinetic energy dissipation by the moving cylinders. The result implies that the wave decay by the coastal vegetation might be overestimated if the mangrove vegetation was represented as stationary state.


Author(s):  
Md. Readul Mahmud

The fluids inside passive micromixers are laminar in nature and mixing depends primarily on diffusion. Hence mixing efficiency is generally low, and requires a long channel length and longtime compare to active mixers. Various designs of complex channel structures with/without obstacles and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive mixers. This work presents a design of a modified T mixer. To enhance the mixing performance, circular and hexagonal obstacles are introduced inside the modified T mixer. Numerical investigation on mixing and flow characteristics in microchannels is carried out using the computational fluid dynamics (CFD) software ANSYS 15. Mixing in the channels has been analyzed by using Navier–Stokes equations with water-water for a wide range of the Reynolds numbers from 1 to 500. The results show that the modified T mixer with circular obstacles has far better mixing performance than the modified T mixer without obstacles. The reason is that fluids' path length becomes longer due to the presence of obstacles which gives fluids more time to diffuse. For all cases, the modified T mixer with circular obstacle yields the best mixing efficiency (more than 60%) at all examined Reynolds numbers. It is also clear that efficiency increase with axial length. Efficiency can be simply improved by adding extra mixing units to provide adequate mixing. The value of the pressure drop is the lowest for the modified T mixer because there is no obstacle inside the channel. Modified T mixer and modified T mixer with circular obstacle have the lowest and highest mixing cost, respectively. Therefore, the current design of modified T with circular obstacles can act as an effective and simple passive mixing device for various micromixing applications.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1481
Author(s):  
Xinrui Li ◽  
Zhenggui Li ◽  
Baoshan Zhu ◽  
Weijun Wang

To study the effect of tip clearance on unsteady flow in a tubular turbine, a full-channel numerical calculation was carried out based on the SST k–ω turbulence model using a power-plant prototype as the research object. Tip leakage flow characteristics of three clearance δ schemes were compared. The results show that the clearance value is directly proportional to the axial velocity, momentum, and flow sum of the leakage flow but inversely proportional to turbulent kinetic energy. At approximately 35–50% of the flow direction, velocity and turbulent kinetic energy of the leakage flow show the trough and peak variation law, respectively. The leakage vortex includes a primary tip leakage vortex (PTLV) and a secondary tip leakage vortex (STLV). Increasing clearance increases the vortex strength of both parts, as the STLV vortex core overlaps Core A of PTLV, and Core B of PTLV becomes the main part of the tip leakage vortex. A “right angle effect” causes flow separation on the pressure side of the tip, and a local low-pressure area subsequently generates a separation vortex. Increasing the gap strengthens the separation vortex, intensifying the flow instability. Tip clearance should therefore be maximally reduced in tubular turbines, barring other considerations.


2020 ◽  
Vol 8 (6) ◽  
pp. 3977-3980

A numerical analysis is carried out to understand the flow characteristics for different impeller configurations of a single stage centrifugal blower. The volute design is based on constant velocity method. Four different impeller configurations are selected for the analysis. Impeller blade geometry is created with point by point method. Numerical simulation is carried out by CFD software GAMBIT 2.4.6 and FLUENT 6.3.26. GAMBIT work includes geometry definition and grid generation of computational domain. This process includes selection of grid types, grid refinements and defining correct boundary conditions. Processing work is carried out in FLUENT. The viscous Navier-Stokes equations are solved with control volume approach and the k-ε turbulence model. In this three dimensional numerical analysis is carried out with steady flow approach. The rotor and stator interaction is solved by mixing plane approach. Results of simulation are presented in terms of flow parameters, at impeller outlet and various angular positions inside the volute. Also, the contours of flow properties are presented at the outlet plane of fluid domain. Results suggest that for the same configurations of centrifugal blower, as we change geometrical parameter of impeller the flow inside the blower get affected.


2019 ◽  
Author(s):  
Axelle Viré ◽  
Adriaan Derksen ◽  
Mikko Folkersma ◽  
Kumayl Sarwar

Abstract. Vortex-induced vibrations (VIV) of wind turbine towers can be critical during the installation phase, when the rotor-nacelle assembly is not yet mounted on the tower. The present work uses numerical simulations to study VIV of a two-dimensional cylinder under conditions that are representative of wind turbine towers, both from a fluid-dynamics and structural-dynamics perspective. First, the numerical tools and fluid-structure interaction algorithm are verified by considering a cylinder vibrating freely in a laminar flow. In that case, both the motion amplitude and frequency are shown to agree well with previous results from the literature. Second, VIV is modelled in the turbulent supercritical regime using Unsteady Reynolds-Averaged Navier–Stokes equations. In this context, the turbulence model is first validated on flow past a stationary cylinder at high Reynolds number. Then, results from forced vibrations are validated against experimental results for a range of reduced frequencies and velocities. It is shown that the behaviour of the aerodynamic damping changes with the frequency ratio, and can therefore lead to either self-limiting or self-exciting VIV when the cylinder is left to freely vibrate. Finally, results are shown for a freely-vibrating cylinder under realistic flow and structural conditions. While a clear lock-in map is identified and shows good agreement with published numerical and experimental data, the work also highlights the unsteady nature of the aerodynamic forces and motion under certain operating conditions.


Author(s):  
Joon Sang Lee ◽  
Xiaofeng Xu ◽  
R. H. Pletcher

Flow in an annular pipe with and without a wall rotating about its axis was investigated at moderate Reynolds numbers. The compressible filtered Navier-Stokes equations were solved using a second order accurate finite volume method. Low Mach number preconditioning was used to enable the compressible code to work efficiently at low Mach numbers. A dynamic subgrid-scale stress model accounted for the subgrid-scale turbulence. When the outer wall rotated, a significant reduction of turbulent kinetic energy was realized near the rotating wall and the intensity of bursting effects appeared to decrease. This modification of the turbulent structures was related to the vortical structure changes near the rotating wall. It has been observed that the wall vortices were pushed in the direction of rotation and their intensity increased near the non-rotating wall. The consequent effect was to enhance the turbulent kinetic energy and increased the intensity of the heat transfer rate there.


Sign in / Sign up

Export Citation Format

Share Document