scholarly journals An enhanced anti-disturbance guidance scheme for powered descent phase of Mars landing under actuator fault

2018 ◽  
Vol 15 (1) ◽  
pp. 172988141875988
Author(s):  
Jianwei Xu ◽  
Jianzhong Qiao ◽  
Lei Guo

As a class of autonomous deep-space exploration robots, Mars lander is simultaneously affected by wind disturbance and actuator fault, which hinders precise landing on Mars. In this article, we propose a composite guidance approach by combining disturbance observer and iterative learning observer together. The Mars wind disturbance is dealt by the disturbance observer providing wind estimation which is rejected through feed-forward channel. Meanwhile, the iterative learning observer is used to estimate the deficiency of actuators. The proposed guidance scheme ensures not only the precision but also the reliability of the Mars guidance system. The stability of the closed-loop system is analyzed. Simulations made in different situations demonstrate the performance of the proposed approach.

2016 ◽  
Vol 39 (11) ◽  
pp. 1749-1760 ◽  
Author(s):  
Jiankun Sun ◽  
Shihua Li

This paper develops a systematic iterative learning control (ILC) strategy for systems with mismatched disturbances. The systems with mismatched disturbances are more general and widely exist in practical engineering, where the standard disturbance observer based ILC method is no longer available. To this end, this note proposes a novel ILC scheme based on the disturbance observer, which consists of two parts: a baseline ILC term for stabilizing the nominal system and a disturbance compensation term for attenuating mismatched disturbances by choosing an appropriate compensation gain. It is proven that the performance of the closed-loop system is effectively improved. Finally, the simulation analysis for a permanent-magnet synchronous motor servo system demonstrates the feasibility and efficacy of the proposed method.


2016 ◽  
Vol 64 (1) ◽  
pp. 189-196 ◽  
Author(s):  
P.D. Mandić ◽  
M.P. Lazarević ◽  
T.B. Šekara

Abstract In this paper, the stability problem of Furuta pendulum controlled by the fractional order PD controller is presented. A mathematical model of rotational inverted pendulum is derived and the fractional order PD controller is introduced in order to stabilize the same. The problem of asymptotic stability of a closed loop system is solved using the D-decomposition approach. On the basis of this method, analytical forms expressing the boundaries of stability regions in the parameters space have been determined. The D-decomposition method is investigated for linear fractional order systems and for the case of linear parameter dependence. In addition, some results for the case of nonlinear parameter dependence are presented. An example is given and tests are made in order to confirm that stability domains have been well calculated. When the stability regions have been determined, tuning of the fractional order PD controller can be carried out.


Author(s):  
Yiqi Xu

This paper studies the attitude-tracking control problem of spacecraft considering on-orbit refuelling. A time-varying inertia model is developed for spacecraft on-orbit refuelling, which actually includes two processes: fuel in the transfer pipe and fuel in the tank. Based upon the inertia model, an adaptive attitude-tracking controller is derived to guarantee the stability of the resulted closed-loop system, as well as asymptotic convergence of the attitude-tracking errors, despite performing refuelling operations. Finally, numerical simulations illustrate the effectiveness and performance of the proposed control scheme.


Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


1970 ◽  
Vol 7 (2) ◽  
pp. 136-144 ◽  
Author(s):  
V. Milligan ◽  
K. Y. Lo

In excavations below groundwater level, instability of the base may result from the inflow of water into the excavation. The most important factors influencing the stability are the ground water and detailed soil conditions at the site.Construction problems encountered in excavations in clay strata, underlain by pervious water bearing layers, are described. The remedial measures adopted in each case are also discussed. From a study of the observations made in the case records, it is suggested that excavation in intact clays may be carried out to depths exceeding that limited by the ratio of t/h = 0.5, where t is the distance from the bottom of the excavation to the top of the water bearing stratum, and h is the water head at the top of the water bearing stratum, provided that the clay is not disturbed during construction so that the shear strength of the clay is preserved.


Author(s):  
Shubo Yang ◽  
Xi Wang

Limit protection, which frequently exists as an auxiliary part in control systems, is not the primary motive of control but is a necessary guarantee of safety. As in the case of aircraft engine control, the main objective is to provide the desired thrust based on the position of the throttle; nevertheless, limit protection is indispensable to keep the engine operating within limits. There are plenty of candidates that can be applied to design the regulators for limit protection. PID control with gain-scheduling technique has been used for decades in the aerospace industry. This classic approach suggests linearizing the original nonlinear model at different power-level points, developing PID controllers correspondingly, and then scheduling the linear time-invariant (LTI) controllers according to system states. Sliding mode control (SMC) is well-known with mature theories and numerous successful applications. With the one-sided convergence property, SMC is especially suitable for limit protection tasks. In the case of aircraft engine control, SMC regulators have been developed to supplant traditional linear regulators, where SMC can strictly keep relevant outputs within their limits and improve the control performance. In aircraft engine control field, we all know that the plant is a nonlinear system. However, the present design of the sliding controller is carried out with linear models, which severely restricts the valid scope of the controller. Even if the gain scheduling technique is adopted, the stability of the whole systems cannot be theoretically proved. Research of linear parameter varying (LPV) system throws light on a class of nonlinear control problems. In present works, we propose a controller design method based on the LPV model to solve the engines control problem and achieve considerable effectiveness. In this paper, we discuss the design of a sliding controller for limit protection task of aircraft engines, the plant of which is described as an LPV system instead of LTI models. We define the sliding surface as tracking errors and, with the aid of vertex property, present the stability analysis of the closed-loop system on the sliding surface. An SMC law is designed to guarantee that the closed-loop system is globally attracted to the sliding surface. Hot day (ISA+30° C) takeoff simulations based on a reliable turbofan model are presented, which test the proposed method for temperature protection and verify its stability and effectiveness.


2019 ◽  
Vol 21 (2) ◽  
pp. 162
Author(s):  
Nurul Fajriah

This article is a study of literature describing religious harmony: the relevance of Article 25 of the Medina Charter and Article 29 of the 1945 Constitution. The Medina Charter was made in the 7th century (classical century) and Article 29 of the 1945 Constitution was born in modern times, around the 20th century. Both have relevancy which states that every citizen is free to adhere to their respective religions. The plurality of society in Indonesia has similarities and differences from the plurality of society in Medina around 622 AD. The stability and harmony of religious communities in the Medina at that time was regulated in the Medina charter which is the constitution of the Medina state. Harmony among religious communities in Indonesia is also an important concern of the Indonesian government as stipulated in Article 29 of the 1945 Constitution. Freedom of religion is guaranteed by the state because the state believes that religious diversity is not a disintegrating factor for the Indonesian people.Abstrak: Artikel ini adalah kajian literatur yang mendeskripsikan kerukunan umat beragama: relevansi pasal 25 Piagam Madinah dan Pasal 29 UUD 1945. Piagam Madinah dibuat pada abad VII (abad klasik) dan pasal 29 UUD 1945 baru lahir pada zaman modern, sekitar abad XX. Keduanya memiliki relevansi yang menyatakan bahwa setiap warga negara bebas menganut agamanya masing-masing. Kemajemukan masyarakat di Indonesia mempunyai sisi-sisi persamaan dan perbedaan dengan kemajemukan masyarakat di Madinah sekitar tahun 622 M. Keberlangsungan dan keharmonisan umat beragama di negara Madinah pada waktu itu diatur dalam piagam Madinah yang merupakan konstitusi negara Madinah. Kerukunan antar umat beragama di Indonesia juga menjadi perhatian penting pemerintah dengan adanya kebijakan Negara Republik Indonesia dari segi agama yang tertuang dalam pasal 29 UUD 1945. Kebebasan beragama ini dijamin oleh negara karena keyakinan bahwa keberagaman agama tidak akan menjadi disentegrating factor bagi bangsa Indonesia


Sign in / Sign up

Export Citation Format

Share Document