Bench press and pushup repetitions to failure with equated load

2017 ◽  
Vol 12 (5) ◽  
pp. 647-652
Author(s):  
Taran L Eckel ◽  
Casey M Watkins ◽  
David C Archer ◽  
Megan A Wong ◽  
Jose A Arevalo ◽  
...  

The bench press and pushup are commonly used for training upper body muscular strength and endurance. Although they are often used interchangeably, differences between the two relative to body mass load are unknown. Furthermore, sex differences may exist due to anthropometric body mass specificity. The purpose of this study was to evaluate the relationship between the pushup and bench press when performing repetitions to failure with an equated load. On day 1, 25 recreationally trained subjects (16 men, age = 23.00 ± 2.36 years, height = 178.19 ± 9.61 cm, mass = 74.80 ± 13.44 kg; 9 women, age = 23.11 ± 2.71 years, height = 160.78 ± 5.95 cm, mass = 53.63 ± 5.60 kg), performed a one repetition maximum bench press and an isometric pushup on a force plate to determine bodyweight load supported in both the up and down positions. Grip width on the bench press was measured as the distance between middle fingers and was used for hand placement during pushups. For the down position, a safety squat device was placed on the right triceps to signal that the upper arms were parallel to the ground, while for the up position, triceps were perpendicular to the floor. Days 2 and 3 consisted of performing repetitions to failure for either the bench press or pushup exercise with a load that was equal to the average relative bodyweight force of the up and down pushup positions. For the pushup, subjects followed a 60 beats per minute tempo and the test was terminated if they failed to complete a full repetition; they could not maintain cadence or there were three faults in form. For the bench press, they followed the same 60 s tempo and the test was terminated if they failed to complete a full repetition or could not maintain cadence. A 2 (exercise: bench press, pushup) × 2 (sex: men, women) mixed factor ANOVA demonstrated no interaction, but there were significant (P < 0.05) main effects for exercise and sex where more repetitions were performed in the pushup (19.36 ± 11.68 reps) than the bench press (11.40 ± 8.38 reps) exercise. Also, men performed significantly more repetitions to failure (men =20.22 ± 8.20 reps, women = 6.78 ± 5.69 reps). For combined sexes, there was a significant (P < 0.05), strong relationship (r = 0.82) between bench press and pushup repetitions to failure. For men, there was a significant (P < 0.05), strong relationship (r = 0.81), while for women, there was a moderate relationship (r = 0.76). Men had significantly (P < 0.05) greater bench press one repetition maximum (men = 99.29 ± 23.98 kg, women = 42.17 ± 8.88 kg), percentage of body mass supported as an average of the up and down positions (men = 74.33 ± 2.57%, women = 69.70 ± 2.63%) and bench press one repetition maximum relative to their body mass (men = 1.32 ± 0.22%, women = 0.79 ± 0.13%). The bench press and pushup are two distinct upper body exercises for repetitions to failure due to upper body musculature and body position sex differences. Choice of the pushup or bench press exercise should be based on training goal and sex.

2007 ◽  
Vol 17 (5) ◽  
pp. 433-444 ◽  
Author(s):  
Scott C. Forbes ◽  
Darren G. Candow ◽  
Jonathan P. Little ◽  
Charlene Magnus ◽  
Philip D. Chilibeck

The purpose of this study was to determine the effects of Red Bull energy drink on Wingate cycle performance and muscle endurance. Healthy young adults (N = 15, 11 men, 4 women, 21 ± 5 y old) participated in a crossover study in which they were randomized to supplement with Red Bull (2 mg/kg body mass of caffeine) or isoenergetic, isovolumetric, noncaffeinated placebo, separated by 7 d. Muscle endurance (bench press) was assessed by the maximum number of repetitions over 3 sets (separated by 1-min rest intervals) at an intensity corresponding to 70% of baseline 1-repetition maximum. Three 30-s Wingate cycling tests (load = 0.075 kp/kg body mass), with 2 min recovery between tests, were used to assess peak and average power output. Red Bull energy drink significantly increased total bench-press repetitions over 3 sets (Red Bull = 34 ± 9 vs. placebo = 32 ± 8, P < 0.05) but had no effect on Wingate peak or average power (Red Bull = 701 ± 124 W vs. placebo = 700 ± 132 W, Red Bull = 479 ± 74 W vs. placebo = 471 ± 74 W, respectively). Red Bull energy drink significantly increased upper body muscle endurance but had no effect on anaerobic peak or average power during repeated Wingate cycling tests in young healthy adults.


Author(s):  
Jonathan Sinclair ◽  
Christopher James Edmundson ◽  
Ian Bentley

Abstract Purpose This two-experiment study aimed to examine (1) the accuracy and reliability of repetitions-in-reserve and (2) using a randomized trial, the efficacy of repetition-in-reserve compared to traditional percentage-based training during a 4-week pre-season strength training block in elite rugby league players. Methods In experiment 1, participants performed deadlift, bench press and weighted pull up exercises for 3, 6, and 9 repetitions to failure using self-selected loads. This was undertaken on two occasions, separated by 8-weeks. In experiment 2, participants were randomly separated into either repetitions-in-reserve or percentage-based training groups. They completed a 4-week pre-season training block with training prescribed based on the group to which they were assigned. Measures of body mass and 3 repetition max strength in the aforementioned exercises were measured pre and post intervention. Results Experiment 1 showed that repetitions-in-reserve exhibited generally acceptable levels of accuracy and moderate-good levels of reliability. However, the deadlift when the required number of repetitions was 6 and 9 and the bench press when number of repetitions was 9 were not associated with acceptable levels of accuracy and reliability, respectively. Experiment 2 showed that there were no differences between repetitions-in-reserve or percentage-based training group for the strength outcomes, although there were significant increases in body mass in the percentage-based group (pre = 85.6 ± 10.6 kg, post = 86.4 ± 10.8 kg). Conclusion Repetitions-in-reserve is generally associated with acceptable levels of accuracy and moderate-good levels of reliability, although there were some exceptions for the deadlift in relation to accuracy and bench press for reliability. Experiment 2 shows that although there were no differences between groups for the strength-based outcomes, significant increases in body mass in the percentage-based group may make this approach a more effective approach to prepare players for the rigors of the rugby league season.


2018 ◽  
Vol 13 (3) ◽  
pp. 353-359 ◽  
Author(s):  
Amador García-Ramos ◽  
Alejandro Torrejón ◽  
Belén Feriche ◽  
Antonio J. Morales-Artacho ◽  
Alejandro Pérez-Castilla ◽  
...  

Purpose: To provide 2 general equations to estimate the maximum possible number of repetitions (XRM) from the mean velocity (MV) of the barbell and the MV associated with a given number of repetitions in reserve, as well as to determine the between-sessions reliability of the MV associated with each XRM. Methods: After determination of the bench-press 1-repetition maximum (1RM; 1.15 ± 0.21 kg/kg body mass), 21 men (age 23.0 ± 2.7 y, body mass 72.7 ± 8.3 kg, body height 1.77 ± 0.07 m) completed 4 sets of as many repetitions as possible against relative loads of 60%1RM, 70%1RM, 80%1RM, and 90%1RM over 2 separate sessions. The different loads were tested in a randomized order with 10 min of rest between them. All repetitions were performed at the maximum intended velocity. Results: Both the general equation to predict the XRM from the fastest MV of the set (CV = 15.8–18.5%) and the general equation to predict MV associated with a given number of repetitions in reserve (CV = 14.6–28.8%) failed to provide data with acceptable between-subjects variability. However, a strong relationship (median r2 = .984) and acceptable reliability (CV < 10% and ICC > .85) were observed between the fastest MV of the set and the XRM when considering individual data. Conclusions: These results indicate that generalized group equations are not acceptable methods for estimating the XRM–MV relationship or the number of repetitions in reserve. When attempting to estimate the XRM–MV relationship, one must use individualized relationships to objectively estimate the exact number of repetitions that can be performed in a training set.


Author(s):  
Ben M. Krings ◽  
Brandon D. Shepherd ◽  
Hunter S. Waldman ◽  
Matthew J. McAllister ◽  
JohnEric W. Smith

Carbohydrate mouth rinsing has been shown to enhance aerobic exercise performance, but there is limited research with resistance exercise (RE). Therefore, the purpose of this investigation was to examine the effects of carbohydrate mouth rinsing during a high-volume upper body RE protocol on performance, heart rate responses, ratings of perceived exertion, and felt arousal. Recreationally experienced resistance-trained males (N = 17, age: 21 ± 1 years, height: 177.3 ± 5.2 cm, mass: 83.5 ± 9.3 kg) completed three experimental sessions, with the first serving as familiarization to the RE protocol. During the final two trials, the participants rinsed a 25-ml solution containing either a 6% carbohydrate solution or an artificially flavored placebo in a randomized, counterbalanced, and double-blinded fashion. The participants rinsed a total of nine times immediately before beginning the protocol and 20 s before repetitions to failure with the exercises bench press, bent-over row, incline bench press, close-grip row, hammer curls, skull crushers (all completed at 70% one-repetition maximum), push-ups, and pull-ups. Heart rate, ratings of perceived exertion, and felt arousal were measured at the baseline and immediately after each set of repetitions to failure. There were no differences for the total repetitions completed (carbohydrate = 203 ± 25 repetitions vs. placebo = 201 ± 23 repetitions, p = .46, Cohen’s d = 0.10). No treatment differences were observed for heart rate, ratings of perceived exertion, or felt arousal (p > .05). Although carbohydrate mouth rinsing has been shown to be effective in increasing aerobic performance, the results from this investigation show no benefit in RE performance in resistance-trained males.


2012 ◽  
Vol 7 (4) ◽  
pp. 394-396 ◽  
Author(s):  
Gerasimos Terzis ◽  
Thomas Kyriazis ◽  
Giorgos Karampatsos ◽  
Giorgos Georgiadis

Purpose:Although muscle mass and strength are thought to be closely related to throwing performance, there are few scientific data about these parameters in elite shot-putters. The purpose of this case report was to present longitudinal data for muscle strength and body composition in relation to performance of an elite male shot-putter.Methods:A male national champion with the best rotational shot-put performance of 20.36 m (in 2010) was followed from 2003 to 2011 (current age: 29 y). Data regarding body composition (dual X-ray absorptiometry), as well as 1-repetition-maximum muscle strength (bench press, squat, snatch) and rotational shot-put performance, were collected every February for the last 9 y, 4 wk before the national indoor championship event.Results:The athlete’s personal-best performances in squat, bench press, and snatch were 175 kg, 210 kg, and 112.5 kg, respectively. His peak total lean body mass was 92.4 kg, bone mineral density 1.55 g/cm2, and lowest body fat 12.9%. His shot-put performance over these 9 years was significantly correlated with 1-repetition-maximum squat strength (r = .93, P < .01), bench press (r = .87, P < .01), and snatch (r = .92, P < .01). In contrast, shot-put performance was not significantly correlated with any of the body-composition parameters.Conclusions:The results of this case study suggest that elite rotational shot-put performance may not be directly correlated with lean body mass. Instead, it seems that it is closely related with measures of muscle strength.


2016 ◽  
Vol 32 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Amador García-Ramos ◽  
Slobodan Jaric ◽  
Paulino Padial ◽  
Belén Feriche

This study aimed to (1) evaluate the linearity of the force–velocity relationship, as well as the reliability of maximum force (F0), maximum velocity (V0), slope (a), and maximum power (P0); (2) compare these parameters between the traditional and ballistic bench press (BP); and (3) determine the correlation of F0 with the directly measured BP 1-repetition maximum (1RM). Thirty-two men randomly performed 2 sessions of traditional BP and 2 sessions of ballistic BP during 2 consecutive weeks. Both the maximum and mean values of force and velocity were recorded when loaded by 20–70% of 1RM. All force–velocity relationships were strongly linear (r > .99). While F0 and P0 were highly reliable (ICC: 0.91–0.96, CV: 3.8–5.1%), lower reliability was observed for V0 and a (ICC: 0.49–0.81, CV: 6.6–11.8%). Trivial differences between exercises were found for F0 (ES: < 0.2), however the a was higher for the traditional BP (ES: 0.68–0.94), and V0 (ES: 1.04–1.48) and P0 (ES: 0.65–0.72) for the ballistic BP. The F0 strongly correlated with BP 1RM (r: 0.915–0.938). The force–velocity relationship is useful to assess the upper body maximal capabilities to generate force, velocity, and power.


2017 ◽  
Vol 12 (10) ◽  
pp. 1378-1384 ◽  
Author(s):  
Miguel Sánchez-Moreno ◽  
David Rodríguez-Rosell ◽  
Fernando Pareja-Blanco ◽  
Ricardo Mora-Custodio ◽  
Juan José González-Badillo

Purpose: To analyze the relationship between movement velocity and relative load (%1RM) in the pull-up exercise (PU) and to determine the pattern of repetition-velocity loss during a single set to failure in pulling one’s own body mass. Methods: Fifty-two men (age = 26.5 ± 3.9 y, body mass = 74.3 ± 7.2 kg) performed a first evaluation (T1) consisting of an 1-repetition-maximum test (1RM) and a test of maximum number of repetitions to failure pulling one’s own body mass (MNR) in the PU exercise. Thirty-nine subjects performed both tests on a second occasion (T2) following 12 wk of training. Results: The authors observed a strong relationship between mean propulsive velocity (MPV) and %1RM (r = −.96). Mean velocity attained with 1RM load (V1RM) was 0.20 ± 0.05 m·s−1, and it influenced the MPV attained with each %1RM. Although 1RM increased by 3.4% from T1 to T2, the relationship between MPV and %1RM, and V1RM, remained stable. The authors also confirmed stability in the V1RM regardless of individual relative strength. The authors found a strong relationship between percentage of velocity loss and percentage of performed repetitions (R2 = .88), which remained stable despite a 15% increase in MNR. Conclusions: Monitoring repetition velocity allows estimation of the %1RM used as soon as the first repetition with a given load is performed, and the number of repetitions remaining in reserve when a given percentage of velocity loss is achieved during a PU exercise set.


Author(s):  
Tanuj Wadhi ◽  
Christopher Barakat ◽  
Alexandre L. Evangelista ◽  
Jeremy R. Pearson ◽  
Ashmeet S. Anand ◽  
...  

AbstractThe study examined the effects of adding a loaded stretch in the inter-set rest period (ISS) compared to traditional resistance training (TR) on muscular adaptations in resistance-trained males. Twenty-six subjects were randomly assigned into two groups (ISS: n=12; TR: n=14) and underwent an 8-week training regimen. Subjects in ISS underwent an additional loaded stretch for 30 s at 15% of their working load from the prior set during the inter-set rest periods. Muscle thickness of the pectoralis major at the belly (BMT) and lateral (LMT) portions, One-repetition maximum (1RM) and repetitions-to-failure (RTF) on the bench press exercise were measured at baseline and post 8 weeks of training. Additionally, volume load and perceptual parameters for exertion and recovery were measured. Both groups had similar total volume load and average perceptual parameters (p>0.05). There was a main time effect (p<0.01) for all but one dependent variable indicating that both groups responded similarly across time [(∆BMT: ISS=2.7±1.7 mm; TR = 3.0±2.2 mm), (∆LMT: ISS=3.2±1.6 mm; TR=2.8±1.7 mm, (∆1RM: ISS=6.6±3.8 kg; TR=7.5±5.7 kg). Repetitions-to-failure did not change in either group (∆RTF: ISS=0.0±2.1 repetitions; TR=0.0±2.3 repetitions, p>0.05). Our results suggest that addition of a loaded ISS does not affect muscular adaptations either positively or negatively in resistance-trained males.


1995 ◽  
Vol 11 (2) ◽  
pp. 205-215 ◽  
Author(s):  
Aron J. Murphy ◽  
Greg J. Wilson ◽  
John F. Pryor ◽  
Robert U. Newton

The purpose of this investigation was to determine the relationship between isometric measures of muscular function at two different joint angles and dynamic performance. Thirteen experienced weight trainers performed two isometric tests in a bench press position, at elbow angles of 90 and 120°. Performance was assessed by a one repetition maximum (1-RM) bench press and a series of upper body bench press throws at loads of 15, 30, and 60% of the 1-RM load. The results clearly show that changing the joint angle from 120 to 90° improved the relationship between most of the tests and performance by more than 100%, possibly due to differences in motor unit recruitment patterns and differing muscle mechanics (e.g., length-tension), at varying joint angles. It was suggested that the best angle at which to assess isometric function may be the joint angle at which peak force is developed in the performance of interest.


2019 ◽  
Vol 03 (03) ◽  
pp. E74-E81
Author(s):  
Roland van den Tillaar

AbstractThe purpose of this study was to compare the similarity in kinematics and upper-body muscle activation between push-up and bench press exercises over a range of loads. Twenty resistance-trained subjects (age 22.5±5.24 yrs, body mass 83.7±10.7 kg, height 1.80±0.06 m) executed bench presses and push-ups with 4 different loads. Bench press was executed at 50–80% of their assumed 1 repetition max in steps of 10 kg, while push-ups were executed without a weight vest and with a 10–20–30 kg weight vest. A linear encoder measured kinematics (displacement, time, average and peak velocity) during the exercises at each load, together with mean and maximal muscle activation of 8 upper body muscles and their timing for each exercise and each load. The main findings of this study demonstrate no differences in kinematics and muscle activation between the two exercises and that the different loads had the same effect upon both push-up and bench press in experienced resistance-trained men. For coaches and athletes, push-ups and bench presses for strength training can be used interchangeably. By using a weight vest, push-ups can mimic different loads that are similar to different intensities in the bench press that can be used to train strength demands.


Sign in / Sign up

Export Citation Format

Share Document