The effect of rotational stiffness on ankle tibiocalcaneal motion and ligament strain during external rotation

Author(s):  
Keith D Button ◽  
Paige Thornton ◽  
Jerrod E Braman ◽  
Feng Wei ◽  
Roger C Haut

The rotational stiffness of footwear has been previously shown to have an effect on ankle kinematics and injury risk, but this relationship has not yet been modeled. The aim of this study was to derive equations from experimental data that were able to predict ankle kinematics under various torsional stiffness constraints and use these equations to estimate ligament strains. Three athletic tapes were tested for their ability to constrain the ankle during external rotation. Six subjects then performed a voluntary external foot rotation using the selected tape designs to constrain the ankle, as well as with no constraints. The motion of the calcaneus with respect to the tibia (tibiocalcaneal motion) from 0° to 15° of tibia rotation and predictive equations were determined to establish tibiocalcaneal rotation, eversion, and flexion as a function of gross tibia motion and tape stiffness. These predictive equations were then used to drive a computational model in which ankle ligament strains were determined at 15° of tibia rotation and for ankle constraint stiffness ranging from 0 to 30 N m/deg. The three tapes provided significantly different constraint stiffnesses during external foot rotation. There was no statistical effect of ankle constraint on the dorsiflexion response of the ankle (p = 0.461). In contrast, there was an effect of constraint stiffness on tibiocalcaneal external rotation (p < 0.001) and tibiocalcaneal eversion (p < 0.001). Results of the model simulation revealed the highest ligament strains in the anterior tibiotalar ligament and anterior tibiofibular ligament. Anterior tibiotalar ligament strain increased with increasing constraint stiffness, while there was little effect of constraint stiffness on anterior tibiofibular ligament strain. Results from this study could aid in the design of footwear, as well as the analysis of clinical injuries.

2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Feng Wei ◽  
Eric G. Meyer ◽  
Jerrod E. Braman ◽  
John W. Powell ◽  
Roger C. Haut

Shoe-surface interface characteristics have been implicated in the high incidence of ankle injuries suffered by athletes. Yet, the differences in rotational stiffness among shoes may also influence injury risk. It was hypothesized that shoes with different rotational stiffness will generate different patterns of ankle ligament strain. Four football shoe designs were tested and compared in terms of rotational stiffness. Twelve (six pairs) male cadaveric lower extremity limbs were externally rotated 30 deg using two selected football shoe designs, i.e., a flexible shoe and a rigid shoe. Motion capture was performed to track the movement of the talus with a reflective marker array screwed into the bone. A computational ankle model was utilized to input talus motions for the estimation of ankle ligament strains. At 30 deg of rotation, the rigid shoe generated higher ankle joint torque at 46.2 ± 9.3 Nm than the flexible shoe at 35.4 ± 5.7 Nm. While talus rotation was greater in the rigid shoe (15.9 ± 1.6 deg versus 12.1 ± 1.0 deg), the flexible shoe generated more talus eversion (5.6 ± 1.5 deg versus 1.2± 0.8 deg). While these talus motions resulted in the same level of anterior deltoid ligament strain (approxiamtely 5%) between shoes, there was a significant increase of anterior tibiofibular ligament strain (4.5± 0.4% versus 2.3 ± 0.3%) for the flexible versus more rigid shoe design. The flexible shoe may provide less restraint to the subtalar and transverse tarsal joints, resulting in more eversion but less axial rotation of the talus during foot/shoe rotation. The increase of strain in the anterior tibiofibular ligament may have been largely due to the increased level of talus eversion documented for the flexible shoe. There may be a direct correlation of ankle joint torque with axial talus rotation, and an inverse relationship between torque and talus eversion. The study may provide some insight into relationships between shoe design and ankle ligament strain patterns. In future studies, these data may be useful in characterizing shoe design parameters and balancing potential ankle injury risks with player performance.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Keith D. Button ◽  
Feng Wei ◽  
Eric G. Meyer ◽  
Roger C. Haut

The use of computational modeling to predict injury mechanisms and severity has recently been investigated, but few models report failure level ligament strains. The hypothesis of the study was that models built off neutral ankle experimental studies would generate the highest ligament strain at failure in the anterior deltoid ligament, comprised of the anterior tibiotalar ligament (ATiTL) and tibionavicular ligament (TiNL). For models built off everted ankle experimental studies the highest strain at failure would be developed in the anterior tibiofibular ligament (ATiFL). An additional objective of the study was to show that in these computational models ligament strain would be lower when modeling a partial versus complete ligament rupture experiment. To simulate a prior cadaver study in which six pairs of cadaver ankles underwent external rotation until gross failure, six specimen-specific models were built based on computed tomography (CT) scans from each specimen. The models were initially positioned with 20 deg dorsiflexion and either everted 20 deg or maintained at neutral to simulate the cadaver experiments. Then each model underwent dynamic external rotation up to the maximum angle at failure in the experiments, at which point the peak strains in the ligaments were calculated. Neutral ankle models predicted the average of highest strain in the ATiTL (29.1 ± 5.3%), correlating with the medial ankle sprains in the neutral cadaver experiments. Everted ankle models predicted the average of highest strain in the ATiFL (31.2 ± 4.3%) correlating with the high ankle sprains documented in everted experiments. Strains predicted for ligaments that suffered gross injuries were significantly higher than the strains in ligaments suffering only a partial tear. The correlation between strain and ligament damage demonstrates the potential for modeling to provide important information for the study of injury mechanisms and for aiding in treatment procedure.


2021 ◽  
pp. 1-8
Author(s):  
Elena M. D’Argenio ◽  
Timothy G. Eckard ◽  
Barnett S. Frank ◽  
William E. Prentice ◽  
Darin A. Padua

Context: Anterior cruciate ligament (ACL) injuries are a common and devastating injury in women’s soccer. Several risk factors for ACL injury have been identified, but have not yet been examined as potentially dynamic risk factors, which may change throughout a collegiate soccer season. Design: Prospective cohort study. Methods: Nine common clinical screening assessments for ACL injury risk, consisting of range of motion, movement quality, and power, were assessed in 29 Division I collegiate women’s soccer players. Preseason and midseason values were compared for significant differences. Change scores for each risk factor were also correlated with cumulative training loads during the first 10 weeks of a competitive soccer season. Results: Hip external rotation range of motion and power had statistically significant and meaningful differences at midseason compared with preseason, indicating they are dynamic risk factors. There were no significant associations between the observed risk factor changes and cumulative training load. Conclusions: Hip external rotation range of motion and power are dynamic risk factors for ACL injury in women’s collegiate soccer athletes. Serial screening of these risk factors may elucidate stronger associations with injury risk and improve prognostic accuracy of screening tools.


Author(s):  
Gretchen D. Oliver ◽  
Kyle Wasserberger ◽  
Anne de Swart ◽  
Kenzie Friesen ◽  
Jessica Downs ◽  
...  

Context Inadequate hip range of motion (ROM) and isometric strength (ISO) may interfere with energy flow through the kinetic chain and result in increased injury susceptibility. Objective To examine the relationship of hip ROM and ISO with energy flow through the trunk and pitching-arm segments during the windmill softball pitch in youth athletes. A subsequent purpose was to examine the relationship between energy flow and pitch speed. Design Descriptive laboratory study. Setting University research laboratory. Patients or Other Participants A sample of 29 youth softball pitchers (age = 11.2 ± 1.3 years, height = 155.0 ± 10.4 cm, mass = 53.2 ± 12.6 kg). Main Outcome Measure(s) Bilateral hip internal-rotation and external-rotation (ER) ROM and ISO were measured. Net energy outflow and peak rates of energy outflow from the distal ends of the trunk, humerus, and forearm were calculated for the acceleration phase of the windmill softball pitch, and pitch speed was measured. Results Regression analysis revealed an effect of drive-hip ER ISO on the net energy flow out of the distal ends of the trunk (P = .045) and humerus (P = .002). Specifically, increased drive-hip ER ISO was associated with increased net energy outflow from the trunk to the humerus and from the humerus to the forearm. No significant effects of hip ROM or other hip ISO measures were observed. Additionally, pitchers who achieved higher peak rates of distal outflow tended to achieve higher pitch speeds. Conclusions An association was present between drive-hip ER ISO and the net energy flow out of the distal ends of the trunk and humerus during the acceleration phase of the windmill softball pitch, emphasizing the importance of hip and lower body strength in executing the whole-body windmill pitch. Overall, energy-flow analysis is an interesting new way to analyze pitching mechanics and will aid in furthering our understanding of performance and injury risk in windmill softball pitching.


2009 ◽  
Vol 18 (3) ◽  
pp. 375-388 ◽  
Author(s):  
Lindsay K. Drewes ◽  
Patrick O. McKeon ◽  
Gabriele Paolini ◽  
Patrick Riley ◽  
D. Casey Kerrigan ◽  
...  

Context:Kinematic patterns during gait have not been extensively studied in relation to chronic ankle instability (CAI).Objective:To determine whether individuals with CAI demonstrate altered ankle kinematics and shank-rear-foot coupling compared with controls during walking and jogging.Design:Case control.Setting:Motion-analysis laboratory.Participants:7 participants (3 men, 4 women) suffering from CAI (age 24.6 ± 4.2 y, height 172.6 ± 9.4 cm, mass 70.9 ± 8.1 kg) and 7 (3 men, 4 women) healthy, matched controls (age 24.7 ± 4.5 y, height 168.2 ± 5.9 cm, mass 66.5 ± 9.8 kg).Interventions:Subjects walked and jogged on a treadmill while 3-dimensional kinematics of the lower extremities were captured.Main Outcome Measures:The positions of rear-foot inversion–eversion and shank rotation were calculated throughout the gait cycle. Continuous relative-phase angles between these segments were calculated to assess coupling.Results:The CAI group demonstrated more rear-foot inversion and shank external rotation during walking and jogging. There were differences between groups in shank-rear-foot coupling during terminal swing at both speeds.Conclusions:Altered ankle kinematics and joint coupling during the terminal-swing phase of gait may predispose a population with CAI to ankle-inversion injuries. Less coordinated movement during gait may be an indication of altered neuromuscular recruitment of the musculature surrounding the ankle as the foot is being positioned for initial contact.


2019 ◽  
Vol 40 (6) ◽  
pp. 710-719 ◽  
Author(s):  
Nicola Krähenbühl ◽  
Travis L. Bailey ◽  
Maxwell W. Weinberg ◽  
Nathan P. Davidson ◽  
Beat Hintermann ◽  
...  

Background: The diagnosis of subtle injuries to the distal tibiofibular syndesmosis remains elusive. Conventional radiographs miss a large subset of injuries that present without frank diastasis. This study evaluated the impact of torque application on the assessment of syndesmotic injuries when using weightbearing computed tomography (CT) scans. Methods: Seven pairs of male cadavers (tibia plateau to toe-tip) were included. CT scans with axial load application (85 kg) and with (10 Nm) or without torque to the tibia (corresponding to external rotation of the foot and ankle) were taken during 4 test conditions. First, intact ankles (native) were scanned. Second, 1 specimen from each pair underwent anterior inferior tibiofibular ligament (AITFL) transection (condition 1A), while the contralateral underwent deltoid transection (condition 1B). Third, the lesions were reversed on the same specimens and the remaining intact deltoid or AITFL was transected (condition 2). Finally, the distal tibiofibular interosseous membrane (IOM) was transected in all ankles (condition 3). Measurements were performed to assess the integrity of the distal tibiofibular syndesmosis on digitally reconstructed radiographs (DRRs) and on axial CT scans. Results: Torque impacted DRR and axial CT scan measurements in almost all conditions. The ability to diagnose syndesmotic injuries using axial CT measurements improved when torque was applied. No significant syndesmotic morphological change was observed with or without torque for either isolated AITFL or deltoid ligament transection. Discussion: Torque application had a notable impact on two-dimensional (2-D) measurements used to diagnose syndesmotic injuries for both DRRs and axial CT scans. Because weightbearing conditions allow for standardized positioning of the foot while radiographs or CT scans are taken, the combination of axial load and torque application may be desirable. Clinical Relevance: Application of torque to the tibia impacts 2-D measurements and may be useful when diagnosing syndesmotic injuries by DRRs or axial CT images.


2020 ◽  
Vol 12 (2) ◽  
pp. 132-138
Author(s):  
Joshua K. Helmkamp ◽  
Garrett S. Bullock ◽  
Allison Rao ◽  
Ellen Shanley ◽  
Charles Thigpen ◽  
...  

Context: Humeral torsion (HT) has been linked to various injuries and benefits. However, the exact interplay between HT, shoulder range of motion (ROM), competition level differences, and injury risk is unclear. Objective: To determine the relationship between HT, ROM, and injury risk in baseball players. Secondarily, to determine HT based on competition level. Data Sources: PubMed, Embase, Web of Science, CINAHL, and Cochrane databases were searched from inception until November 4, 2018. Study Selection: Inclusion criteria consisted of (1) HT measurements and (2) arm injury or shoulder ROM. Study Design: Systematic review. Level of Evidence: Level 3. Data Extraction: Two reviewers recorded patient demographics, competition level, HT, shoulder ROM, and injury data. Results: A total of 32 studies were included. There was no difference between baseball players with shoulder and elbow injuries and noninjured players (side-to-side HT difference: mean difference [MD], 1.75 [95% CI, –1.83 to 2.18]; dominant arm: MD, 0.17 [95% CI, –1.83 to 2.18]). Meta-regression determined that for every 1° increase in shoulder internal rotation (IR), there was a subsequent increase of 0.65° in HT (95% CI, 0.28 to 1.02). HT did not explain external rotation (ER ROM: 0.19 [95% CI, –0.24 to 0.61]) or horizontal adduction (HA ROM: 0.18 [95% CI, –0.46 to 0.82]). There were no differences between HT at the high school, college, or professional levels. Conclusion: No relationship was found between HT and injury risk. However, HT explained 65% of IR ROM but did not explain ER ROM or HA ROM. There were no differences in HT pertaining to competition level. The majority of IR may be nonmodifiable. Treatment to restore and maintain clinical IR may be important, especially in players with naturally greater torsion. HT adaptation may occur prior to high school, which can assist in decisions regarding adolescent baseball participation.


2010 ◽  
Vol 26 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Abbey C. Thomas ◽  
Scott G. McLean ◽  
Riann M. Palmieri-Smith

Neuromuscular fatigue exacerbates abnormal landing strategies, which may increase noncontact anterior cruciate ligament (ACL) injury risk. The synergistic actions of quadriceps and hamstrings (QH) muscles are central to an upright landing posture, though the precise effect of simultaneous fatigue of these muscles on landing and ACL injury risk is unclear. Elucidating neuromechanical responses to QH fatigue thus appears important in developing more targeted fatigue-resistance intervention strategies. The current study thus aimed to examine the effects of QH fatigue on lower extremity neuromechanics during dynamic activity. Twenty-five healthy male and female volunteers performed three single-leg forward hops onto a force platform before and after QH fatigue. Fatigue was induced through sets of alternating QH concentric contractions, on an isokinetic dynamometer, until the first five repetitions of a set were performed at least 50% below QH peak torque. Three-dimensional hip and knee kinematics and normalized (body mass × height) kinetic variables were quantified for pre- and postfatigue landings and subsequently analyzed by way of repeated- measures mixed-model ANOVAs. QH fatigue produced significant increases in initial contact (IC) hip internal rotation and knee extension and external rotation angles (p< .05), with the increases in knee extension and external rotation being maintained at the time of peak vertical ground reaction force (vGRF) (p< .05). Larger knee extension and smaller knee fexion and external rotation moments were also evident at peak vGRF following fatigue (p< .05). Females landed with greater hip fexion and less abduction than males at both IC and peak vGRF as well as greater knee fexion at peak vGRF (p< .05). The peak vGRF was larger for females than males (p< .05). No sex × fatigue effects were found (p> .05). Fatigue of the QH muscles altered hip and knee neuromechanics, which may increase the risk of ACL injury. Prevention programs should incorporate methods aimed at countering QH fatigue.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Bardiya Akhbari ◽  
Matthew H. Dickinson ◽  
Ednah G. Louie ◽  
Sami Shalhoub ◽  
Lorin P. Maletsky

Ankle sprains are a common injury that may need reconstruction and extensive physical therapy. The purpose of this study was to provide a description of the biomechanics of the ankle joint complex (AJC) after anterior talofibular (ATFL) and calcaneofibular (CFL) ligament rupture to better understand severe ankle injuries. The envelope of motion of ten cadaveric ankles was examined by manual manipulations that served as training data for a radial basis function used to interpolate ankle mobility at flexion angles under load and torque combinations. Moreover, ankle kinematics were examined, while tendons were loaded to identify how their performance is altered by ligament rupture. The increased force required to plantarflex the ankle following ligament rupture was measured by calculating the load through the Achilles. Following ATFL injury, the largest changes were internal rotation (5 deg) in deep plantarflexion and anterior translation (1.5 mm) in early plantarflexion. The combined ATFL and CFL rupture changed the internal/external rotation (3 deg), anterior/posterior translation (1 mm), and inversion (5 deg) throughout flexion relative to the isolated ATFL rupture. Moreover, the Achilles' load increased by 24% after the rupture of ligaments indicating a reduction in its efficiency. This study suggests that if patients demonstrate primarily an increased laxity in internal rotation, the damage has solely occurred to the ATFL; however, if the constraint is reduced across multiple motions, there is likely damage to both ligaments. Higher loads in the Achilles suggest that it is overloaded after the injury; hence, targeting the calf muscles in rehabilitation exercises may reduce patients' pain.


2019 ◽  
Vol 7 (8) ◽  
pp. 232596711986401 ◽  
Author(s):  
Stéphanie Lamer ◽  
Jonah Hébert-Davies ◽  
Vincent Dubé ◽  
Stéphane Leduc ◽  
Émilie Sandman ◽  
...  

Background: Syndesmotic injuries can lead to long-term complications; hence, they require careful management. Conservative treatment is adequate when 1 syndesmotic ligament is injured, but surgery is often necessary to achieve articular congruity when 3 syndesmotic ligaments are ruptured. However, there is some controversy over the best treatment for 2-ligament injuries. Purpose: To evaluate the effect of a controlled ankle motion (CAM) walking boot on syndesmotic instability following iatrogenic isolated anterior inferior tibiofibular ligament (AiTFL) injury and combined AiTFL/interosseous ligament (IOL) injuries in a cadaveric simulated weightbearing model. Study Design: Controlled laboratory study. Methods: Ten cadaveric specimens were dissected to expose the tibial plateau and syndesmosis. The specimens were fitted to a custom-made device, and a reproducible axial load of 750 N was applied. Iatrogenic rupture of the syndesmotic ligaments (AiTFL + IOL) was done sequentially. Uninjured syndesmoses, isolated AiTFL rupture, and combined AiTFL/IOL rupture were compared with and without axial loading (AL) and CAM boot. The distal tibiofibular relationship was evaluated using a previously validated computed tomography scan measurement system. Wilcoxon tests for paired samples and nonparametric data were used. Results: The only difference noted in the distal tibiofibular relationship during AL was an increase in the external rotation of the fibula when using the CAM boot. This was observed with AiTFL rupture (8.40° vs 11.17°; P = .009) and combined AiTFL/IOL rupture (8.81° vs 11.97°; P = .005). Conclusion: AL did not cause a significant displacement between the tibia and fibula, even when 2 ligaments were ruptured. However, the CAM boot produced a significant external rotation with 1 or 2 injured ligaments. Clinical Relevance: Further studies are needed to assess the capacity of the CAM walking boot to prevent malreduction when external rotation forces are applied to the ankle. Moreover, special care should be taken during the fitting of the CAM boot to avoid overinflation of the cushions.


Sign in / Sign up

Export Citation Format

Share Document