scholarly journals New pathway ameliorating ulcerative colitis: focus on Roseburia intestinalis and the gut–brain axis

2021 ◽  
Vol 14 ◽  
pp. 175628482110044
Author(s):  
Fenghua Xu ◽  
Yi Cheng ◽  
Guangcong Ruan ◽  
Liqin Fan ◽  
Yuting Tian ◽  
...  

Background: The community of gut microbes is a key factor controlling the intestinal barrier that communicates with the nervous system through the gut–brain axis. Based on our clinical data showing that populations of Roseburia intestinalis are dramatically decreased in the gut of patients with ulcerative colitis, we studied the efficacy of a strain belonging to this species in the context of colitis and stress using animal models. Methods: Dextran sulfate sodium was used to induce colitis in rats, which then underwent an enema with R. intestinalis as a treatment. The disease activity index, fecal changes and body weight of rats were recorded to evaluate colitis, while histological and immunohistochemical analyses were carried out to examine colon function, and 16S rRNA sequencing was performed to evaluate the gut microbiota change. Behavioral assays and immunohistochemical staining of brain were performed to assess the effect of R. intestinalis on the gut–brain axis. Results: Colitis-related symptoms in rats were significantly relieved after R. intestinalis enema, and the stool traits and colon length of rats were significantly recovered after treatment. The gut epithelial integrity and intestinal barrier were restored in treated rats, as evidenced by the higher expression of Zo-1 in colon tissues, accompanied by the restoration of gut microbiota. Meanwhile, depressive-like behaviors of rats were reduced after treatment, and laboratory experiments on neuronal cells also showed that IL-6, IL-7 and 5-HT were downregulated by R. intestinalis treatment in both serum and brain tissue, while Iba-1 expression was reduced in treated rats. Conclusions: The administration of R. intestinalis contributes to restoration of the gut microbiota, promoting colon repair and the recovery of gastrointestinal function. These alterations are accompanied by the relief of depressive-like behaviors through a process modulated by the neuronal network and the regulation of inflammation by the gut–brain axis.

Planta Medica ◽  
2021 ◽  
Author(s):  
Jiaqi Wu ◽  
Yuzheng Wu ◽  
Yue Chen ◽  
Mengyang Liu ◽  
Haiyang Yu ◽  
...  

AbstractUlcerative colitis has been recognized as a chronic inflammatory disease predominantly disturbing the colon and rectum. Clinically, the aminosalicylates, steroids, immunosuppressants, and biological drugs are generally used for the treatment of ulcerative colitis at different stages of disease progression. However, the therapeutic efficacy of these drugs does not satisfy the patients due to the frequent drug resistance. Herein, we reported the anti-ulcerative colitis activity of desmethylbellidifolin, a xanthone isolated from Gentianella acuta, in dextran sulfate sodium-induced colitis in mice. C57BL/6 mice were treated with 2% dextran sulfate sodium in drinking water to induce acute colitis. Desmethylbellidifolin or balsalazide sodium was orally administrated once a day. Biological samples were collected for immunohistological analysis, intestinal barrier function evaluation, cytokine measurement, and gut microbiota analysis. The results revealed that desmethylbellidifolin alleviated colon shortening and body weight loss in dextran sulfate sodium-induced mice. The disease activity index was also lowered by desmethylbellidifolin after 9 days of treatment. Furthermore, desmethylbellidifolin remarkably ameliorated colonic inflammation through suppressing the expression of interleukin-6 and tumor necrosis factor-α. The intestinal epithelial barrier was strengthened by desmethylbellidifolin through increasing levels of occludin, ZO-1, and claudins. In addition, desmethylbellidifolin modulated the gut dysbiosis induced by dextran sulfate sodium. These findings suggested that desmethylbellidifolin effectively improved experimental ulcerative colitis, at least partly, through maintaining intestinal barrier integrity, inhibiting proinflammatory cytokines, and modulating dysregulated gut microbiota.


2021 ◽  
Vol 12 ◽  
Author(s):  
Linghang Qu ◽  
Xiong Lin ◽  
Chunlian Liu ◽  
Chang Ke ◽  
Zhongshi Zhou ◽  
...  

In this study, we investigated the therapeutic effects and mechanism of atractylodin (ATL) on dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. We found that atractylodin could significantly reverse the effects of DSS-induced ulcerative colitis, such as weight loss, disease activity index score; shorten the colon length, and reverse the pathological changes in the colon of mice. Atractylodin could inhibit the activation of colonic macrophages by inhibiting the MAPK pathway and alleviate intestinal inflammation in the mouse model of ulcerative colitis. Moreover, it could protect the intestinal barrier by inhibiting the decrease of the tight junction proteins, ZO-1, occludin, and MUC2. Additionally, atractylodin could decrease the abundance of harmful bacteria and increase that of beneficial bacteria in the intestinal tract of mice, effectively improving the intestinal microecology. In an LPS-induced macrophage model, atractylodin could inhibit the MAPK pathway and expression of the inflammatory factors of macrophages. Atractylodin could also inhibit the production of lactate, which is the end product of glycolysis; inhibit the activity of GAPDH, which is an important rate-limiting enzyme in glycolysis; inhibit the malonylation of GAPDH, and, thus, inhibit the translation of TNF-α. Therefore, ours is the first study to highlight the potential of atractylodin in the treatment of ulcerative colitis and reveal its possible mechanism.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Guosheng Lin ◽  
Minyao Li ◽  
Nan Xu ◽  
Xiaoli Wu ◽  
Jingjing Liu ◽  
...  

Aim of the Study. This study is aimed at exploring the effects and pharmacological mechanisms of the extracts from the Heritiera littoralis fruit (EFH) on dextran sulfate sodium- (DSS-) induced ulcerative colitis (UC) in mice. Materials and Methods. The chemical compositions of EFH were identified using LC-ESI-MS. The mice with 3% DSS-induced UC were administered EFH (200, 400, and 800 mg/kg), sulfasalazine (SASP, 200 mg/kg), and azathioprine (AZA, 13 mg/kg) for 10 days via daily gavage. The colonic inflammation was evaluated by the disease activity index (DAI), colonic length, histological scores, and levels of inflammatory mediators. The gut microbiota was characterized by 16S rRNA gene sequencing and analysis. Results. LC-ESI-MS analysis showed that EFH was rich in alkaloids and flavones. The results indicated that EFH significantly improved the DAI score, relieved colon shortening, and repaired pathological colonic variations in colitis. In addition, proteins in the NF-κB pathway were significantly inhibited by EFH. Furthermore, EFH recovered the diversity and balance of the gut microbiota. Conclusions. EFH has protective effects against DSS-induced colitis by keeping the balance of the gut microbiota and suppressing the NF-κB pathway.


2021 ◽  
Author(s):  
Jing Guo ◽  
Yan-yan Zhang ◽  
Mei Sun ◽  
Ling-fen Xu

Abstract Aim This study aimed to explore effect of curcumin on inflammatory bowel disease (IBD) in rats and its mechanism.Methods: A dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) rat model was established. The disease activity index (DAI) scores were calculated. The histopathological damage scores were determined by haematoxylin-eosin (H&E) staining. Regulatory T (Treg) cells and T helper 17 (Th17) cells in the spleen were analysed by flow cytometry. The levels of interleukin (IL)-10 and IL-17A were determined by enzyme-linked immunosorbent assay (ELISA). Results: Compared with the DSS model group, the curcumin group exhibited significantly reduced DAI scores and improvements in histopathological damage. The expression of CD4+IL-17+ Th17 cells was significantly lower and the expression of CD4+CD25+Foxp3+ Treg cells was significantly higher in the curcumin group than in the DSS group.Conclusion: Curcumin may be a new and effective treatment for IBD by regulating the balance of Treg/Th17 cells and the expression of IL-10 and IL-17A.


2014 ◽  
Vol 51 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Luiz Gustavo de OLIVEIRA ◽  
André Luiz da CUNHA ◽  
Amaury Caiafa DUARTE ◽  
Maria Christina Marques Nogueira CASTAÑON ◽  
Júlio Maria Fonseca CHEBLI ◽  
...  

ContextInflammatory bowel disease, including ulcerative colitis and Crohn’s disease, comprising a broad spectrum of diseases those have in common chronic inflammation of the gastrointestinal tract, histological alterations and an increased activity levels of certain enzymes, such as, metalloproteinases.ObjectivesEvaluate a possible correlation of disease activity index with the severity of colonic mucosal damage and increased activity of metalloproteinases in a model of ulcerative colitis induced by dextran sulfate sodium.MethodsColitis was induced by oral administration of 5% dextran sulfate sodium for seven days in this group (n=10), whereas control group (n=16) received water. Effects were analyzed daily by disease activity index. In the seventh day, animals were euthanized and hematological measurements, histological changes (hematoxylin and eosin and Alcian Blue staining), myeloperoxidase and metalloproteinase activities (MMP-2 and MMP-9) were determined.ResultsDextran sulfate sodium group showed elevated disease activity index and reduced hematological parameters. Induction of colitis caused tissue injury with loss of mucin and increased myeloperoxidase (P<0.001) and MMP-9 activities (45 fold) compared to the control group.ConclusionsIn this study, we observed a disease activity index correlation with the degree of histopathological changes after induction of colitis, and this result may be related mainly to the increased activity of MMP-9 and mieloperoxidase.


2019 ◽  
Vol 10 (5) ◽  
pp. 543-553 ◽  
Author(s):  
Y. Li ◽  
M. Liu ◽  
J. Zhou ◽  
B. Hou ◽  
X. Su ◽  
...  

Human inflammatory bowel disease (IBD) and experimental colitis models in mice are associated with shifts in gut microbiota composition, and several probiotics are widely used to improve gastrointestinal health. Here, we investigated whether the probiotic Bacillus licheniformis Zhengchangsheng® (BL) ameliorates dextran sulphate sodium (DSS)-induced colitis through alteration of the gut microbiota. Experimental colitis was induced in BALB/C mice by dissolving 3% DSS in their drinking water for 7 days, which were gavaged with 0.2 ml phosphate-buffered saline or BL (3×107 cfu/ml) once a day. Administration of BL attenuated several effects of DSS-induced colitis, including weight loss, increased disease activity index, and disrupted intestinal barrier integrity. In addition, BL mitigated the reduction in faecal microbiota richness in DSS treated mice. Interestingly, BL was found to reduce the elevated circulating endotoxin level in mice with colitis by modulating the microbial composition of the microbiota, and this was highly associated with a proportional decrease in gut Bacteroidetes. Our results demonstrate that BL can attenuate DSS-induced colitis and provide valuable insight into microbiota interactions during IBD.


2020 ◽  
Author(s):  
Qi-yue Yang ◽  
Ya-nan He ◽  
Le-le Ma ◽  
Run-chun Xu ◽  
Nan Li ◽  
...  

Abstract Background: Indigo naturalis is a natural dye extracted from plants and has a good anti-inflammatory effect. Clinical studies have shown that it can improve ulcerative colitis (UC), but the active constituents and the mechanism are unclear. Methods: The anti-UC activity of Indigo naturalis and its two main compounds (indigo and indirubin) were investigated in dextran sulfate sodium (DSS)-induced UC mice. Indigo naturalis, indigo and indirubin were administrated to DSS-induced UC rats by oral gavage for 1 weeks. The anti-UC effect was evaluated by pathological section, inflammatory cytokine production, western blotting, and gut microbiota analysis via 16S rRNA sequencing. Results: Indigo naturalis, indigo and indirubin can improve the UC induced by DSS. Their effect intensity is Indigo naturalis > indirubin > indigo based on disease activity index, body weight, colon length and pathological section. Indigo naturalis, indigo and indirubin also decrease the expression of NF-κB,TLR4 and MYD88 proteins, thus reducing the level of related inflammation cytokines (IL-1β, IL-6 and TNF-α) both in serum and tissue. In addition, Indigo naturalis and indigo improved symptoms of gut microbial disturbance, and decreased Firmicutes/Bacteroidetes ratio and the significantly increased probiotics such as Lactobacillus. Indirubin has little effect on the regulation of gut microbial. Conclusions: Indigo naturalis could attenuate the DSS-induced UC in mice, by means of ameliorating intestinal inflammation, improving intestinal mucosa, and regulating the disturbed gut microbiota. Indigo and indirubin could also attenuate the DSS-induced UC in mice, but their comprehensive effect is not as good as Indigo naturalis.


Author(s):  
Suzanne Mashtoub ◽  
Bang V. Hoang ◽  
Megan Vu ◽  
Kerry A. Lymn ◽  
Christine Feinle-Bisset ◽  
...  

Plant-sourced formulations such as Iberogast and the traditional Chinese medicine formulation, Cmed, purportedly possess anti-inflammatory and radical scavenging properties. We investigated Iberogast and Cmed, independently, for their potential to decrease the severity of the large bowel inflammatory disorder, ulcerative colitis. Sprague Dawley rats (n = 8/group) received daily 1 mL gavages (days 0-13) of water, Iberogast (100 μL/200 μL), or Cmed (10 mg/20 mg). Rats ingested 2% dextran sulfate sodium or water ad libitum for 7 days commencing on day 5. Dextran sulfate sodium administration increased disease activity index scores from days 6 to 12, compared with water controls ( P < .05). On day 10, 200 μL Iberogast decreased disease activity index scores in colitic rats compared with colitic controls ( P < .05). Neither Iberogast nor Cmed achieved statistical significance for daily metabolic parameters or colonic crypt depth. The therapeutic effects of Iberogast and Cmed were minimal in the colitis setting. Further studies of plant extracts are required investigating greater concentrations and alternative delivery systems.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Genki Tanaka ◽  
Nozomi Hagihara ◽  
Ryota Hosomi ◽  
Takaki Shimono ◽  
Seiji Kanda ◽  
...  

Protein derived from fish has not only nutritional properties but also health-promoting properties. Few studies have examined the effect of dietary Alaska pollock protein (APP) on the anticolitis effect reported to be associated with metabolic syndrome (MetS). This study investigated the effect of APP intake on colitis symptoms, gut microbiota, and its metabolites in the experimental colitis mouse model induced by dextran sulfate sodium (DSS). Male C57BL/6J mice were divided into three groups: (1) DSS-untreated mice fed an American Institute of Nutrition (AIN) 93G diet (protein source is casein), (2) DSS-treated mice fed an AIN93G diet, and (3) DSS-treated mice fed an APP diet. After the mice were fed the diets for 21 days, experimental colitis was induced by three cycles of 2% DSS administration for 5 days followed by washouts over the course of 5 days. APP-reduced body weight loss increased the disease activity index, and elevated spleen weight and alleviated colon length shortening and colonic tissue damage. Furthermore, APP altered the structure and composition of the microbiota and short-chain fatty acids in feces. Since APP intake alleviates experimental colitis induced by DSS administration through alterations in the gut microbiota and its metabolites, we deduced that APP would inhibit MetS progression via colitis suppression.


2018 ◽  
Vol 37 (10) ◽  
pp. 1054-1068 ◽  
Author(s):  
BO Ajayi ◽  
IA Adedara ◽  
EO Farombi

Ulcerative colitis (UC) is a relapsing and remitting inflammatory disease of the colon, with an increasing incidence worldwide. 6-Gingerol (6G) is a bioactive constituent of Zingiber officinale, which has been reported to possess various biological activities. This study was designed to evaluate the role of 6G in chronic UC. Chronic UC was induced in mice by three cycles of 2.5% dextran sulfate sodium (DSS) in drinking water. Each cycle consisted of 7 days of 2.5% DSS followed by 14 days of normal drinking water. 6G (100 mg/kg) and a reference anti-colitis drug sulfasalazine (SZ) (100 mg/kg) were orally administered daily to the mice throughout exposure to three cycles of 2.5% DSS. Administration of 6G and SZ significantly prevented disease activity index and aberrant crypt foci formation in DSS-treated mice. Furthermore, 6G and SZ suppresses immunoexpression of tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, Regulated on activation, normal T cell expressed and secreted (RANTES), and Monocyte chemoattractant protein-1 (MCP-1) in the DSS-treated mice. 6G effectively protected against colonic oxidative damage by augmenting the antioxidant status with marked decrease in lipid peroxidation levels in DSS-treated mice. Moreover, 6G significantly inhibited nuclear factor kappa B (P65), p38, cyclooxygenase-2, and β-catenin whereas it enhanced IL-10 and adenomatous polyposis coli expression in DSS-treated mice. In conclusion, 6G prevented DSS-induced chronic UC via anti-inflammatory and antioxidative mechanisms and preservation of the Wnt/β-catenin signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document