scholarly journals The role of gastrointestinal pathogens in inflammatory bowel disease: a systematic review

2021 ◽  
Vol 14 ◽  
pp. 175628482110044
Author(s):  
Jordan E. Axelrad ◽  
Ken H. Cadwell ◽  
Jean-Frederic Colombel ◽  
Shailja C. Shah

The inflammatory bowel diseases (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), are chronic, progressive, inflammatory conditions of the gastrointestinal tract. Imbalance in the gut microbial community, or dysbiosis, and the subsequent immune response, represent the critical relationship between genetic susceptibility, microbes, and environment factors, that result in IBD. Gastrointestinal pathogens – a common cause of dysbiosis – have been implicated as an environmental trigger in new onset IBD, as well as flare of existing IBD. In this article, we systematically review clinical data regarding the association between specific gastrointestinal pathogens and IBD. Numerous bacteria, viruses, fungi, and parasites have been implicated in the pathogenesis of IBD, and exacerbations of existing disease. In this article, we will also specifically discuss the less recognized microbes that have an inverse association with IBD, including certain bacterial pathogens, such as Helicobacter pylori, and parasites, such as Trichuris species. Future prospective and experimental studies are required to establish causality and clarify potential mechanisms of enteric pathogens in modifying the risk and course of IBD.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Julio Gálvez

The gastrointestinal tract plays a central role in immune system, being able to mount efficient immune responses against pathogens, keeping the homeostasis of the human gut. However, conditions like Crohn’s disease (CD) or ulcerative colitis (UC), the main forms of inflammatory bowel diseases (IBD), are related to an excessive and uncontrolled immune response against normal microbiota, through the activation of CD4+ T helper (Th) cells. Classically, IBD was thought to be primarily mediated by Th1 cells in CD or Th2 cells in UC, but it is now known that Th17 cells and their related cytokines are crucial mediators in both conditions. Th17 cells massively infiltrate the inflamed intestine of IBD patients, where they produce interleukin- (IL-) 17A and other cytokines, triggering and amplifying the inflammatory process. However, these cells show functional plasticity, and they can be converted into either IFN-γ producing Th1 cells or regulatory T cells. This review will summarize the current knowledge regarding the regulation and functional role of Th17 cells in the gut. Deeper insights into their plasticity in inflammatory conditions will contribute to advancing our understanding of the mechanisms that regulate mucosal homeostasis and inflammation in the gut, promoting the design of novel therapeutic approaches for IBD.


2018 ◽  
Vol 20 (2) ◽  
pp. 232-240 ◽  
Author(s):  
Izabella Mogilnicka ◽  
Marcin Ufnal

Background:Accumulating evidence suggests that microbiota play an important role in host’s homeostasis. Thus far, researchers have mostly focused on the role of bacterial microbiota. However, human gut is a habitat for several fungal species, which produce numerous metabolites. Furthermore, various types of food and beverages are rich in a wide spectrum of fungi and their metabolites.Methods:We searched PUBMED and Google Scholar databases to identify clinical and pre-clinical studies on fungal metabolites, composition of human mycobiota and fungal dysbiosis.Results:Fungal metabolites may serve as signaling molecules and exert significant biological effects including trophic, anti-inflammatory or antibacterial actions. Finally, research suggests an association between shifts in gut fungi composition and human health. Changes in mycobiota composition have been found in obesity, hepatitis and inflammatory bowel diseases.Conclusion:The influence of mycobiota and dietary fungi on homeostasis in mammals suggests a pharmacotherapeutic potential of modulating the mycobiota which may include treatment with probiotics and fecal transplantation. Furthermore, antibacterial action of fungi-derived molecules may be considered as a substitution for currently used antibacterial agents and preservatives in food industry.


Author(s):  
Shruthi Sanjitha Sampath ◽  
Sivaramakrishnan Venkatabalsubramanian ◽  
Satish Ramalingam

: MicroRNAs regulate gene expression at the posttranscriptional level by binding to the mRNA of their target genes. The dysfunction of miRNAs is strongly associated with the inflammation of the colon. Besides, some microRNAs are shown to suppress tumours while others promote tumour progression and metastasis. Inflammatory bowel diseases include Crohn’s disease and Ulcerative colitis which increase the risk factor for inflammation-associated colon cancer. MicroRNAs are shown to be involved in gastrointestinal pathologies, by targeting the transcripts encoding proteins of the intestinal barrier and their regulators that are associated with inflammation and colon cancer. Detection of these microRNAs in the blood, serum, tissues, faecal matter, etc will enable us to use these microRNAs as biomarkers for early detection of the associated malignancies and design novel therapeutic strategies to overcome the same. Information on MicroRNAs can be applied for the development of targeted therapies against inflammation-mediated colon cancer.


2021 ◽  
Vol 9 (4) ◽  
pp. 697
Author(s):  
Valerio Baldelli ◽  
Franco Scaldaferri ◽  
Lorenza Putignani ◽  
Federica Del Chierico

Inflammatory bowel diseases (IBDs) are a group of chronic gastrointestinal inflammatory diseases with unknown etiology. There is a combination of well documented factors in their pathogenesis, including intestinal microbiota dysbiosis. The symbiotic microbiota plays important functions in the host, and the loss of beneficial microbes could favor the expansion of microbial pathobionts. In particular, the bloom of potentially harmful Proteobacteria, especially Enterobacteriaceae, has been described as enhancing the inflammatory response, as observed in IBDs. Herein, we seek to investigate the contribution of Enterobacteriaceae to IBD pathogenesis whilst considering the continuous expansion of the literature and data. Despite the mechanism of their expansion still remaining unclear, their expansion could be correlated with the increase in nitrate and oxygen levels in the inflamed gut and with the bile acid dysmetabolism described in IBD patients. Furthermore, in several Enterobacteriaceae studies conducted at a species level, it has been suggested that some adherent-invasive Escherichia coli (AIEC) play an important role in IBD pathogenesis. Overall, this review highlights the pivotal role played by Enterobacteriaceae in gut dysbiosis associated with IBD pathogenesis and progression.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
M. Hornschuh ◽  
E. Wirthgen ◽  
M. Wolfien ◽  
K. P. Singh ◽  
O. Wolkenhauer ◽  
...  

AbstractEpigenetics has become a promising field for finding new biomarkers and improving diagnosis, prognosis, and drug response in inflammatory bowel disease. The number of people suffering from inflammatory bowel diseases, especially Crohn's disease, has increased remarkably. Crohn's disease is assumed to be the result of a complex interplay between genetic susceptibility, environmental factors, and altered intestinal microbiota, leading to dysregulation of the innate and adaptive immune response. While many genetic variants have been identified to be associated with Crohn's disease, less is known about the influence of epigenetics in the pathogenesis of this disease. In this review, we provide an overview of current epigenetic studies in Crohn's disease. In particular, we enable a deeper insight into applied bioanalytical and computational tools, as well as a comprehensive update toward the cell-specific evaluation of DNA methylation and histone modifications.


2021 ◽  
Vol 22 (5) ◽  
pp. 2645
Author(s):  
Dinh Nam Tran ◽  
Seon Myeong Go ◽  
Seon-Mi Park ◽  
Eui-Man Jung ◽  
Eui-Bae Jeung

Inflammatory bowel diseases (IBDs) comprises a range of chronic inflammatory conditions of the intestinal tract. The incidence and prevalence of IBDs are increasing worldwide, but the precise etiology of these diseases is not completely understood. Calcium signaling plays a regulatory role in cellular proliferation. Nckx3, a potassium-dependent Na+/Ca2+ exchanger, is not only expressed in the brain but also in the aortic, uterine, and intestinal tissues, which contain abundant smooth muscle cells. This study investigated the role of Nckx3 in intestinal inflammation. Microarray analyses revealed the upregulation of the innate immune response-associated genes in the duodenum of Nckx3 knockout (KO) mice. The Nckx3 KO mice also showed an increase in IBD- and tumorigenesis-related genes. Using dextran sodium sulfate (DSS)-induced experimental colitis mice models, the Nckx3 KO mice showed severe colitis. Furthermore, the pathways involving p53 and NF-κB signaling were significantly upregulated by the absence of Nckx3. Overall, Nckx3 plays a critical role in the innate immune and immune response and may be central to the pathogenesis of IBD.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Luca Pastorelli ◽  
Elena Dozio ◽  
Laura Francesca Pisani ◽  
Massimo Boscolo-Anzoletti ◽  
Elena Vianello ◽  
...  

Inflammatory and immune mediated disorders are risk factors for arterial and venous thromboembolism. Inflammatory bowel diseases (IBD) confer an even greater risk of thromboembolic events than other inflammatory conditions. It has been shown that IBD patients display defective intestinal barrier functions. Thus, pathogen-associated molecular patterns (PAMPs) coming from the intestinal bacterial burden might reach systemic circulation and activate innate immunity receptors on endothelial cells and platelets, promoting a procoagulative state. Aim of the study was to test this hypothesis, correlating the presence of circulating PAMPs with the activation of innate immune system and the activation of the coagulatory cascade in IBD patients. Specifically, we studied lipopolysaccharide (LPS), Toll-like receptor (TLR) 2, TLR4, and markers of activated coagulation (i.e., D-Dimer and prothrombin fragmentF1+2) in the serum and plasma of IBD patients. We found that LPS levels are increased in IBD and correlate with TLR4 concentrations; although a mild correlation between LPS and CRP levels was detected, clinical disease activity does not appear to influence circulating LPS. Instead, serum LPS correlates with both D-Dimer andF1+2measurements. Taken together, our data support the role of an impairment of intestinal barrier in triggering the activation of the coagulatory cascade in IBD.


Sign in / Sign up

Export Citation Format

Share Document