scholarly journals A Stepwise Protocol for Induction and Selection of Prominent Coniferous Cell Cultures for the Production of β-Thujaplicin

2015 ◽  
Vol 10 (5) ◽  
pp. 1934578X1501000
Author(s):  
Shinjiro Ogita ◽  
Masahito Shichiken ◽  
Chizuru Ito ◽  
Toshiyuki Yamashita ◽  
Taiji Nomura ◽  
...  

In order to demonstrate the potential of plant cell culture systems to produce a target natural bioactive compound, we proposed a stepwise protocol for β-thujaplicin production as follows. 1. Induction phase: Characteristics of callus cultures originating from newly flushed shoots of 10 conifer species were evaluated on different basal media such as Murashige and Skoog (MS), Schenk and Hildebrandt (SH), and Lloyd and McCown's Woody Plant medium (WP) containing 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D) either alone or in combination with 1 μM of N6-benzyladenine (BA). The conifer species used were as follows: Chamaecyparis ( C. obtusa Sieb. et Zucc. and C. pisifera Sieb. et Zucc), Juniperus (J. chinensis L. ‘Kaizuka', J. chinensis L. var. sargentii, and J. conferta Parlatore), Thuja (T. occidentals L. and T. standishii (Gord.) Carr.), Thujopsis (T. dolabrata Sieb. et Zucc. and T. dolabrata Sieb. et Zucc. var. hondae), and Cryptomeria (C. japonica D. Don). We observed the phenotypes of each callus to determine the optimal conditions for callus induction and to infer biosynthetic activity of the calli over 4–8 weeks. 2. Habituation phase: Each of the cell cultures obtained was transferred to a modified MS medium containing 680 mg L−1 KH2PO4 and 10 μM Picloram to select the habituated cells with synchronous growth pattern. The growth of each cell culture was highly improved in the habituation medium, except that of J. chinensis ‘Kaizuka'. 3. Metabolite-production phase: The concentration of β-thujaplicin (known as hinokitiol in Japan) in the shoots of donor trees and the habituated cell cultures was analyzed via high-performance liquid chromatography (HPLC). Histochemical characteristics of the cells were also observed using laser scanning microscopy (LSM) imaging. After the third step, we tested the biosynthetic activity of two habituated calli ( C. obtusa and J. conferta) on a 0.3%, w/v, yeast extract (YE)-containing medium. We found significant improvement in β-thujaplicin production in J. conferta callus (4600 μg g DW-1), which was up to 20-fold higher than in the habituation phase.

2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000269-000274
Author(s):  
Heike Bartsch ◽  
Dirk Stöpel ◽  
Marcel Himmerlich ◽  
Martin Baca ◽  
Philipp Stadie ◽  
...  

Neurobiological concepts based on state-of-the art technology have so far lacked the complexity of actual high-level neurobiological systems. Two key advances are needed to improve our understanding of such systems: in vitro 3D-neuronal cell culture and 3D MEA systems for measuring such 3D-cultures. These requirements call for smart multilayer and packaging technology. The material Green Tape TM from DuPont Nemours is chosen for the presented works, because its compatibility and those of available metallisation with cell cultures is already proven. An LTCC multilayer circuit with gold electrodes is the base of the 3D MEA. The layout of the 3D MEA is designed to fit the MEA2100-System for in vitro recording from Multi Channel Systems and enable thus a comparable data processing to established 2D MEAs Slots. The surface topography of the thick film electrodes and the surface state is investigated with laser scanning microscopy, SEM, XPS and measurements of the wetting angle of contact. The impedance of the screen printed electrodes is discussed taking these data into account. Their impedance amounts to 24 kΩ and are falls thus below the impedance of commercially available electroplated gold electrodes of 30 kΩ. First promising results have been achieved using 3D MEAs for 2D culture of human pluripotent stem cell derived neural cells.


2003 ◽  
Vol 9 (S03) ◽  
pp. 452-453 ◽  
Author(s):  
Thomas Hanke ◽  
Marcus Wollenweber ◽  
Beatrice Burmeister ◽  
Monika Kruse de Pacheco ◽  
Michael Gelinsky ◽  
...  

2006 ◽  
Vol 188 (7) ◽  
pp. 2355-2363 ◽  
Author(s):  
Chandra N. Patel ◽  
Brian W. Wortham ◽  
J. Louise Lines ◽  
Jacqueline D. Fetherston ◽  
Robert D. Perry ◽  
...  

ABSTRACT We provide the first evidence for a link between polyamines and biofilm levels in Yersinia pestis, the causative agent of plague. Polyamine-deficient mutants of Y. pestis were generated with a single deletion in speA or speC and a double deletion mutant. The genes speA and speC code for the biosynthetic enzymes arginine decarboxylase and ornithine decarboxylase, respectively. The level of the polyamine putrescine compared to the parental speA + speC + strain (KIM6+) was depleted progressively, with the highest levels found in the Y. pestis ΔspeC mutant (55% reduction), followed by the ΔspeA mutant (95% reduction) and the ΔspeA ΔspeC mutant (>99% reduction). Spermidine, on the other hand, remained constant in the single mutants but was undetected in the double mutant. The growth rates of mutants with single deletions were not altered, while the ΔspeA ΔspeC mutant grew at 65% of the exponential growth rate of the speA + speC + strain. Biofilm levels were assayed by three independent measures: Congo red binding, crystal violet staining, and confocal laser scanning microscopy. The level of biofilm correlated to the level of putrescine as measured by high-performance liquid chromatography-mass spectrometry and as observed in a chemical complementation curve. Complementation of the ΔspeA ΔspeC mutant with speA showed nearly full recovery of biofilm to levels observed in the speA + speC + strain. Chemical complementation of the double mutant and recovery of the biofilm defect were only observed with the polyamine putrescine.


2004 ◽  
Vol 385 (7) ◽  
Author(s):  
A.U. Swintek ◽  
S. Christoph ◽  
F. Petrat ◽  
H. de Groot ◽  
M. Kirsch

AbstractSIN-1 is frequently used in cell culture studies as an extracellularly operating generator of peroxynitrite. However, little is known about the nature of the reactive species produced intracellulary from SIN-1. SIN-1 can easily penetrate cells as exemplified for both L-929 mouse fibroblasts and bovine aortic endothelial cells (BAECs) by utilizing capillary zone electrophoresis. In L-929 cells, SIN-1 produced nitric oxide (NO) as monitored by the fluorescent NO scavenger FNOCT-1 and by means of a NO electrode, as well as reactive nitrogenoxide species (RNOS, e.g. peroxynitrite, nitrogen dioxide, dinitrogen trioxide), as detected with the fluorescent indicator DAF-2. Laser scanning microscopy revealed that in L-929 cells SIN-1-derived species initially oxidized the major fraction of the NAD(P)H within the cytosol and the nuclei, whereas the mitochondrial NAD(P)H level was somewhat increased. In marked contrast to this, in BAECs no evidence for NO formation was found although the intracellular amount of SIN-1 was fourfold higher than in L-929 cells. In BAECs, the level of NAD(P)H was slightly decreased within the first 10 min after administration of SIN-1 in both the cytosol/nuclei and mitochondria. These observations reflect the capability of SIN-1 to generate intracellularly either almost exclusively RNOS as in BAECs, or RNOS and freely diffusing NO as in L-929 cells. Nitric oxide as well as RNOS may decisively affect cellular metabolism as indicated by the alterations in the NAD(P)H level. Hence, care should be taken when applying SIN-1 as an exclusively peroxynitrite-generating compound in cell culture systems.


Author(s):  
Yi Fang ◽  
Lixin Mo ◽  
Zhiqing Xin ◽  
Yinjie Chen ◽  
Xiu Li ◽  
...  

Printed electronics is an emerging technology that applies traditional printing or coating processes to the manufacture of electronic devices and products. In order to find a low-cost, high-performance, environmentally-friendly flexible substrate suitable for electronic devices, the printability between four kinds of inkjet photo papers and nano-silver ink was investigated. First, different surface morphologies of the inkjet photo papers were measured by a confocal laser scanning microscopy. Then, a pen and a gravure printer were used to test the printability between photo papers and nano-silver ink. It was found that the conductive track and pattern was influenced by the surface morphology of the photo papers. Furthermore, a four-probe test showed that the conductivity of the ink layers on the four photo papers was almost at the same level. Furthermore, a tearing test with 3 M tapes showed that the silk photo paper had the best tearing resistance. In general, silk photo paper has the best overall performance. This research could be beneficial for the development of flexible electronic devices which are low-cost, mass manufacture suitable and environment friendly.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261884
Author(s):  
Jacqueline de Oliveira Zoccolotti ◽  
Alberto José Cavalheiro ◽  
Camilla Olga Tasso ◽  
Beatriz Ribeiro Ribas ◽  
Túlio Morandin Ferrisse ◽  
...  

This study evaluated the efficacy of Cryptocarya spp extracts on biofilm of Candida albicans and its biocompatibility. Mature biofilm of C. albicans was formed on denture base acrylic resin samples and the fungicidal effect of the extracts was evaluated by Alamar Blue® assay, counting colony-forming units (CFU/mL) and confocal laser scanning microscopy (CLSM). Cytotoxicity of extracts from Cryptocarya species was evaluated by AlamarBlue® assay, using normal oral keratinocytes (NOK) cells. In additional, Analysis of plant extracts by ultra-high-performance liquid chromatography–diode array detector–tandem mass spectrometry (UPLC-DAD-MS) was performed. The results showed significant reduction in the cellular metabolism and in the number of CFU/mL of C. albicans (p<0.05). The concentration of 0.045 g/mL completely inhibited the number of CFU/mL. Regarding cytotoxicity, all extracts decreased cell viability compared to the control group. CLSM analysis showed predominance of live cells, but with a great difference between the groups. Antimicrobial activity of extracts from Cryptocarya on C. albicans biofilm was confirmed. However, all extracts showed toxicity on NOK cells.


2020 ◽  
Vol 21 (5) ◽  
pp. 1583 ◽  
Author(s):  
Erika Bellini ◽  
Viviana Maresca ◽  
Camilla Betti ◽  
Monica Ruffini Castiglione ◽  
Debora Fontanini ◽  
...  

In the present work, we investigated the response to Cd in Leptodictyum riparium, a cosmopolitan moss (Bryophyta) that can accumulate higher amounts of metals than other plants, even angiosperms, with absence or slight apparent damage. High-performance liquid chromatography followed by electrospray ionization tandem mass spectrometry of extracts from L. riparium gametophytes, exposed to 0, 36 and 360 µM Cd for 7 days, revealed the presence of γ-glutamylcysteine (γ-EC), reduced glutathione (GSH), and traces of phytochelatins. The increase in Cd concentrations progressively augmented reactive oxygen species levels, with activation of both antioxidant (catalase and superoxide dismutase) and detoxifying (glutathione-S-transferase) enzymes. After Cd treatment, cytosolic and vacuolar localization of thiol peptides was performed by means of the fluorescent dye monochlorobimane and subsequent observation with confocal laser scanning microscopy. The cytosolic fluorescence observed with the highest Cd concentrations was also consistent with the formation of γ-EC-bimane in the cytosol, possibly catalyzed by the peptidase activity of the L. riparium phytochelatin synthase. On the whole, activation of phytochelatin synthase and glutathione-S-transferase, but minimally phytochelatin synthesis, play a role to counteract Cd toxicity in L. riparium, in this manner minimizing the cellular damage caused by the metal. This study strengthens previous investigations on the L. riparium ability to efficiently hinder metal pollution, hinting at a potential use for biomonitoring and phytoremediation purposes.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3733
Author(s):  
Johannes Arend ◽  
Alexander Wetzel ◽  
Bernhard Middendorf

In addition to the desired plasticizing effect, superplasticizers used in high and ultra-high performance concretes (UHPC) influence the chemical system of the pastes and for example retardation of the cement hydration occurs. Thus, superplasticizers have to be chosen wisely for every material composition and application. To investigate the essential adsorption of these polymers to particle surfaces in-situ to overcome several practical challenges of superplasticizer research, fluorescence microscopy is useful. In order to make the superplasticizer polymers visible for this microscopic approach, they are stained with fluorescence dyes prior the experiment. In this work, the application of this method in terms of retardation and rheological properties of sample systems is presented. The hydration of tricalcium oxy silicate (C3S) in combination with different polycarboxylate ether superplasticizers is observed by fluorescence microscopy and calorimetry. Both methods can identify the retarding effect, depending on the superplasticizer’s chemical composition. On the other hand, the influence of the superplasticizers on the slump of a ground granulated blast furnace slag/cement paste is correlated to fluorescence microscopic adsorption results. The prediction of the efficiency by microscopic adsorption analysis succeeds roughly. At last, the possibility of high-resolution imaging via confocal laser scanning microscopy is presented, which enables the detection of early hydrates and their interaction with the superplasticizers.


Sign in / Sign up

Export Citation Format

Share Document