scholarly journals Synergistic Effect of Several Neurotransmitters in PFC-NAc-VTA Neural Circuit for the Anti-Depression Effect of Shuganheweitang in a Chronic Unpredictable Mild Stress Model

2021 ◽  
Vol 16 (3) ◽  
pp. 1934578X2110024
Author(s):  
Xin Chen ◽  
Yuanchun Ma ◽  
Xiongjun Mou ◽  
Hao Liu ◽  
Hao Ming ◽  
...  

Depression, a major worldwide mental disorder, leads to massive disability and can result in death. The PFC-NAc-VTA neuro circuit is related to emotional, neurovegetative, and cognitive functions, which emerge as a circuit-level framework for understanding reward deficits in depression. Neurotransmitters, which are widely distributed in different brain regions, are important detected targets for the evaluation of depression. Shuganheweitang (SGHWT) is a popular prescription in clinical therapy for depression. In order to investigate its possible pharmacodynamics and anti-depressive mechanism, the complex plant material was separated into different fractions. These in low and high doses, along with low and high doses of SGHWT were tested in animal behavior tests. The low and high doses of SGHWT were more effective than the various fractions, which indicate the importance of synergistic function in traditional Chinese medicine. Furthermore, amino acid (GABA, Glu) and monoamine neurotransmitters (DA, 5-HT, NA, 5-HIAA) in the PFC-NAc-VTA neuro circuit were investigated by UPLC-MS/MS. The level trend of DA and 5-HT were consistent in the PFC-NAc-VTA neuro circuit, whereas 5-HIAA was decreased in the PFC, Glu was decreased in the PFC and VTA, and NA and GABA were decreased in the NAc. The results indicate that the pathogenesis of depression is associated with dysfunction of the PFC-NAc-VTA neural circuit, mainly through the neural projection effects of neurotransmitters associated with various brain regions in the neural circuit. PCA and OPLS-DA score plots demonstrated the similarities of individuals within each group and the differences among the groups. In this study, SGHWT could regulate the concentration level of different neurotransmitters in the PFC-NAc-VTA neuro circuit to improve the depression, which benefitted from the recognition of the brain reward circuitry in mood disorders.

2004 ◽  
Vol 18 (3) ◽  
pp. 200-203 ◽  
Author(s):  
Weiyun Zhang ◽  
Jianmei Li ◽  
Jixiao Zhu ◽  
Zhenqiu Shi ◽  
Yong Wang ◽  
...  

2020 ◽  
Author(s):  
Ernest Mas-Herrero ◽  
Larissa Maini ◽  
Guillaume Sescousse ◽  
Robert J. Zatorre

ABSTRACTNeuroimaging studies have shown that, despite the abstractness of music, it may mimic biologically rewarding stimuli (e.g. food) in its ability to engage the brain’s reward circuity. However, due to the lack of research comparing music and other types of reward, it is unclear to what extent the recruitment of reward-related structures overlaps among domains. To achieve this goal, we performed a coordinate-based meta-analysis of 38 neuroimaging studies (703 subjects) comparing the brain responses specifically to music and food-induced pleasure. Both engaged a common set of brain regions including the ventromedial prefrontal cortex, ventral striatum, and insula. Yet, comparative analyses indicated a partial dissociation in the engagement of the reward circuitry as a function of the type of reward, as well as additional reward type-specific activations in brain regions related to perception, sensory processing, and learning. These results support the idea that hedonic reactions rely on the engagement of a common reward network, yet through specific routes of access depending on the modality and nature of the reward.


Science ◽  
2019 ◽  
Vol 363 (6424) ◽  
pp. eaav0581 ◽  
Author(s):  
Ilaria Carta ◽  
Christopher H. Chen ◽  
Amanda L. Schott ◽  
Schnaude Dorizan ◽  
Kamran Khodakhah

The cerebellum has been implicated in a number of nonmotor mental disorders such as autism spectrum disorder, schizophrenia, and addiction. However, its contribution to these disorders is not well understood. In mice, we found that the cerebellum sends direct excitatory projections to the ventral tegmental area (VTA), one of the brain regions that processes and encodes reward. Optogenetic activation of the cerebello-VTA projections was rewarding and, in a three-chamber social task, these projections were more active when the animal explored the social chamber. Intriguingly, activity in the cerebello-VTA pathway was required for the mice to show social preference in this task. Our data delineate a major, previously unappreciated role for the cerebellum in controlling the reward circuitry and social behavior.


2017 ◽  
Author(s):  
Vincent Croset ◽  
Christoph D Treiber ◽  
Scott Waddell

AbstractTo understand the brain, molecular details need to be overlaid onto neural wiring diagrams so that synaptic mode, neuromodulation and critical signaling operations can be considered. Single-cell transcriptomics provide a unique opportunity to collect this information. Here we present an initial analysis of thousands of individual cells from Drosophila midbrain, that were acquired using Drop-Seq. A number of approaches permitted the assignment of transcriptional profiles to several major brain regions and cell-types. Expression of biosynthetic enzymes and reuptake mechanisms allows all the neurons to be typed according to the neurotransmitter or neuromodulator that they produce and presumably release. Some neuropeptides are preferentially co-expressed in neurons using a particular fast-acting transmitter, or monoamine. Neuromodulatory and neurotransmitter receptor subunit expression illustrates the potential of these molecules in generating complexity in neural circuit function. This cell atlas dataset provides an important resource to link molecular operations to brain regions and complex neural processes.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Vincent Croset ◽  
Christoph D Treiber ◽  
Scott Waddell

To understand the brain, molecular details need to be overlaid onto neural wiring diagrams so that synaptic mode, neuromodulation and critical signaling operations can be considered. Single-cell transcriptomics provide a unique opportunity to collect this information. Here we present an initial analysis of thousands of individual cells from Drosophila midbrain, that were acquired using Drop-Seq. A number of approaches permitted the assignment of transcriptional profiles to several major brain regions and cell-types. Expression of biosynthetic enzymes and reuptake mechanisms allows all the neurons to be typed according to the neurotransmitter or neuromodulator that they produce and presumably release. Some neuropeptides are preferentially co-expressed in neurons using a particular fast-acting transmitter, or monoamine. Neuromodulatory and neurotransmitter receptor subunit expression illustrates the potential of these molecules in generating complexity in neural circuit function. This cell atlas dataset provides an important resource to link molecular operations to brain regions and complex neural processes.


2002 ◽  
Vol 14 (4) ◽  
pp. 155-166 ◽  
Author(s):  
Er de Kloet

A fundamental question in stress research is when the glucocorticoid stress hormone (cortisol in man) stops being neuroprotective and becomes harmful to the brain with negative consequences for cognition and mood. To address this question Section 1 focuses on the action mechanism of glucocorticoids. These hormones act via high and low affinity nuclear receptors, which regulate gene transcription in a coordinate manner. The receptors are expressed abundantly in hippocampus, amygdala and frontal cortex involved in cognitive processes. In Section 2 hypercortisolism is considered a potential disease factor for about 50% of the patients suffering from major depression. Recent data show that these patients recover within a few days when excess cortisol action is blocked with high doses of an antiglucocorticoid. Section 3 concerns animal models with ‘depression-like’ features of hypercorticism generated by manipulation of gene X environment inputs. Using gene expression profiling technology in the hippocampal transcriptome of these animals we identified about 700 potential targets for antidepressants out of 30 000 detectable gene products. One of our models is based on early life programming of the stress system. Rats exposed as pups to maternal deprivation display at senescence an enhanced individual difference in cognitive performance. The maternally deprived senescent animals age either successfully or become senile, at the expense of the average performance of non-deprived controls. The essay is concluded with the notion that the new generation of antidepressants ameliorates specific psychic dysfunctions (e.g. cognitive performance) linked to aberrant stress hormone action in discrete brain regions.


2008 ◽  
Vol 20 (6) ◽  
pp. 941-951 ◽  
Author(s):  
Jasmin Cloutier ◽  
Todd F. Heatherton ◽  
Paul J. Whalen ◽  
William M. Kelley

The current study examined the neural substrates of facial attractiveness judgments. Based on the extant behavioral literature, it was hypothesized that brain regions involved in identifying the potential reward value of a stimulus would be more active when men viewed attractive women than when women viewed attractive men. To test this hypothesis, we conducted an event-related functional magnetic resonance imaging experiment during which participants provided explicit attractiveness judgments for faces of the opposite sex. These individual ratings were subsequently used to perform analyses aimed at identifying the brain regions preferentially responsive to attractive faces for both sex groups. The results revealed that brain regions comprising the putative reward circuitry (e.g., nucleus accumbens [NAcc], orbito-frontal cortex [OFC]) showed a linear increase in activation with increased judgments of attractiveness. However, further analysis also revealed sex differences in the recruitment of OFC, which distinguished attractive and unattractive faces only for male participants.


2020 ◽  
Vol 21 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Gautam Bhardwaj ◽  
Shikha Goswami ◽  
Rajiv Kumar Tonk ◽  
Ramesh K. Goyal ◽  
...  

: The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhort tumor of star-shaped glial cell in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorder like neurofibromatosis and schwanomatosis which develop the tumor in the nervous system. The management of GBM with chemo-radio therapy leads to resistance and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind failure of drugs are due to DNA alkylation in cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bio-active compounds from plants known as phytochemicals, serve as vital sources for anti-cancer drugs. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, podophyllotoxin analogs, camptothecin, curcumin, aloe emodin, quercetin, berberine e.t.c. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancers. However the challenges posed by the presence of BBB/BBTB to restrict passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review we integrated nanotech as novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.


2020 ◽  
Vol 20 (9) ◽  
pp. 800-811 ◽  
Author(s):  
Ferath Kherif ◽  
Sandrine Muller

In the past decades, neuroscientists and clinicians have collected a considerable amount of data and drastically increased our knowledge about the mapping of language in the brain. The emerging picture from the accumulated knowledge is that there are complex and combinatorial relationships between language functions and anatomical brain regions. Understanding the underlying principles of this complex mapping is of paramount importance for the identification of the brain signature of language and Neuro-Clinical signatures that explain language impairments and predict language recovery after stroke. We review recent attempts to addresses this question of language-brain mapping. We introduce the different concepts of mapping (from diffeomorphic one-to-one mapping to many-to-many mapping). We build those different forms of mapping to derive a theoretical framework where the current principles of brain architectures including redundancy, degeneracy, pluri-potentiality and bow-tie network are described.


Sign in / Sign up

Export Citation Format

Share Document