scholarly journals In vitro Study of Radiosensitivity Effects of Galbanic Acid on Ovarian Tumor Cells (OVCAR-3 Cell Line)

2021 ◽  
Vol 16 (10) ◽  
pp. 1934578X2110460
Author(s):  
Raziyeh Hashemi ◽  
Mojtaba Farahi ◽  
Ramin Bagheri ◽  
Mehrdad Iranshahi ◽  
Sepehr Torabinejad ◽  
...  

Background and aims: Radiotherapy ranks among the most important procedures in ovarian cancer therapy. However, radioresistance is becoming more prevalent and is one of the main causes of poor clinical outcomes. To overcome this problem, radiosensitizers may be used. The present study aimed to evaluate the radiosensitizing properties of galbanic acid (GBA) on ovarian cancer cells in vitro. Materials and methods: OVCAR-3 cells, an ovarian cancer cell line, were treated with increasing concentrations of GBA (5, 10, 20, and 40 μg/mL) for 24, 48, and 72 h to determine its half-maximal inhibitory concentration (IC50). Cell viability was assessed by alamar Blue assay. The cells treated with 10 μg/mL GBA for 24 h were exposed to increasing doses of radiation (1, 2, and 4 Gy) and the survival fraction was investigated by clonogenic assay. Results: Assessment of cell viability indicated that GBA caused toxicity in a dose-dependent manner. Additionally, GBA pretreatment significantly improved the radiosensitivity of the cells, and survival fraction data indicated synergy between GBA and radiation. Conclusion: Taken together, the current findings highlight GBA as a potent radiosensitizing agent; however, further research is required to determine the molecular mechanisms of the observed effect both in vitro and in vivo. It is also suggested that the radiosensitization effect of GBA on other cell types should be studied in the future.

2020 ◽  
Vol 88 (1) ◽  
pp. 11 ◽  
Author(s):  
Heba Almosa ◽  
Mihal Alqriqri ◽  
Iuliana Denetiu ◽  
Mohammed A. Baghdadi ◽  
Mohammed Alkhaled ◽  
...  

Herbal medicine has been in use for centuries for a wide variety of ailments; however, the efficacy of its therapeutic agents in modern medicine is currently being studied. Curcuminoids are an example of natural agents, widely used due to their potential contribution in the prevention and treatment of cancer. In this study, the three main compounds of curcuminoids—curcumin, desmethoxycurcumin, and bisdesmethoxycurcumin—were determined by reversed-phase high performance liquid chromatography (HPLC) to quantify total content in a mixture. Subsequently, the effect of the three curcuminoids, employed as one sample, was evaluated, to study the proliferation, apoptosis, cell cycle, and migration of the human ovarian cancer cell line SKOV-3. The results reveal that curcuminoids inhibit the proliferation of SKOV-3 cells with concentration- and time-dependent mechanisms. The morphological analysis of the treated SKOV-3 cells showed a typical apoptotic phenotype—cell shrinkage and membrane blebbing in a dose-dependent manner. In addition, flow cytometry demonstrated an increase in apoptosis with an IC50 of 30 µM curcuminoids. The migration of SKOV-3 cells was also inhibited, reflected by a decrease in wound area. Furthermore, the curcuminoids were found to have no stimulation effect on the expression of cytokines TNF-α and IL-10. These results suggest that a curcuminoid mixture can effectively suppress epithelial cancer cell growth in vitro by inducing cellular changes and apoptosis.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Nanumi Han ◽  
Delnur Anwar ◽  
Naoki Hama ◽  
Takuto Kobayashi ◽  
Hidefumi Suzuki ◽  
...  

Abstract Background Interleukin (IL)-34 acts as an alternative ligand for the colony-stimulating factor-1 receptor and controls the biology of myeloid cells, including survival, proliferation, and differentiation. IL-34 has been reported to be expressed in cancer cells and to promote tumor progression and metastasis of certain cancers via the promotion of angiogenesis and immunosuppressive macrophage differentiation. We have shown in our previous reports that targeting IL-34 in chemo-resistant tumors in vitro resulted in a remarkable inhibition of tumor growth. Also, we reported poor prognosis in patients with IL-34-expressing tumor. Therefore, blocking of IL-34 is considered as a promising therapeutic strategy to suppress tumor progression. However, the molecular mechanisms that control IL-34 production are still largely unknown. Methods IL-34 producing ovarian cancer cell line HM-1 was treated by bromodomain and extra terminal inhibitor JQ1. The mRNA and protein expression of IL-34 was evaluated after JQ1 treatment. Chromatin immunoprecipitation was performed to confirm the involvement of bromodomain-containing protein 4 (Brd4) in the regulation of the Il34 gene. Anti-tumor effect of JQ1 was evaluated in mouse tumor model. Results We identified Brd4 as one of the critical molecules that regulate Il34 expression in cancer cells. Consistent with this, we found that JQ1 is capable of efficiently suppressing the recruitment of Brd4 to the promotor region of Il34 gene. Additionally, JQ1 treatment of mice bearing IL-34-producing tumor inhibited the tumor growth along with decreasing Il34 expression in the tumor. Conclusion The results unveiled for the first time the responsible molecule Brd4 that regulates Il34 expression in cancer cells and suggested its possibility as a treatment target.


2021 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Zahra Lotfi ◽  
Elham Salehi ◽  
Majid Morovati-sharifabad ◽  
Fatemeh Sarkargar ◽  
Gholamhosein Pourghanbari

Introduction: Ovarian cancer is one of the deadliest genital cancers among females and mainly originates from epithelial cells. The cancer generally remains asymptomatic until metastasis. Silibinin, a derivative of Silybum marianum, is a flavonoid with anticancer effects against many tumor cells. The sortilin1 (SORT1) gene has been shown to be overexpressed in ovarian tumors. Here, we investigated the effects of silibinin on SORT1 gene expression and the viability of ovarian A2780s cancer cell line.Methods: The A2780s ovarian cancer cell line was treated with silibinin at the concentrations of 50, 100, and 200 μM for 24 hours, and IC50 (half-maximal inhibitory concentration) was determined. Then the viability percentage of the cells treated with 100 μM silibinin was determined at 24, 48, and 72 hours. After 24 and 48 hours exposure to 100 μM silibinin, RNA was extracted, followed by cDNA synthesis and SORT1 gene expression analysis using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the reference gene by real-time Polymerase chain reaction (PCR).Results: Silibinin in a dose- and time-dependent manner reduced the viability of ovarian cancer cells (P < 0.05), accompanied by a reduction in SORT1 gene expression.Conclusion: The present study showed that silibinin had toxic effects against the A2780s ovarian cancer cell line, suggesting this compound as a potential anticancer agent.


Author(s):  
Changqing Pan ◽  
Dan Wang ◽  
Yao Zhang ◽  
Wenliang Yu

Ovarian cancer is a malignancy with high mortality among women. Multiple reports show that microRNAs (miRs) act as regulators in ovarian cancer inhibition, while the role of miR-1284 in ovarian cancer is still unknown. This study aimed to investigate the effects of miR-1284 on ovarian cancer cells. Human ovarian cancer cell line OVCAR3 was cultured and transfected with miR-1284 mimics, inhibitors, or control. Viability and apoptosis of transfected cells were then determined by MTT assay, BrdU assay, and flow cytometry. Expression changes of p27, p21, and PI3K/Akt pathway-related proteins were measured by Western blot. Results showed that miR-1284 overexpression suppressed cell viability while increasing the apoptosis in OVCAR3 cells. Moreover, the expression level of p27 was upregulated by miR-1284 overexpression. Furthermore, miR-1284 overexpression and Akt inhibitor GSK690693 downregulated the levels of p-Akt and Bcl-2 while upregulating the levels of Bax and caspase 3. However, miR-1284 suppression attenuated the regulatory effects of GSK690693 on these proteins. In conclusion, miR-1284 could inhibit cell viability via regulating the expression of p27 and induce apoptosis via regulating the PI3K/Akt pathway in OVCAR3 cells.


2018 ◽  
Vol 18 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Aikebaier Maimaiti ◽  
Amier Aili ◽  
Hureshitanmu Kuerban ◽  
Xuejun Li

Aims: Gallic acid (GA) is generally distributed in a variety of plants and foods, and possesses cell growth-inhibiting activities in cancer cell lines. In the present study, the impact of GA on cell viability, apoptosis induction and possible molecular mechanisms in cultured A549 lung carcinoma cells was investigated. Methods: In vitro experiments showed that treating A549 cells with various concentrations of GA inhibited cell viability and induced apoptosis in a dose-dependent manner. In order to understand the mechanism by which GA inhibits cell viability, comparative proteomic analysis was applied. The changed proteins were identified by Western blot and siRNA methods. Results: Two-dimensional electrophoresis revealed changes that occurred to the cells when treated with or without GA. Four up-regulated protein spots were clearly identified as malate dehydrogenase (MDH), voltagedependent, anion-selective channel protein 1(VDAC1), calreticulin (CRT) and brain acid soluble protein 1(BASP1). VDAC1 in A549 cells was reconfirmed by western blot. Transfection with VDAC1 siRNA significantly increased cell viability after the treatment of GA. Further investigation showed that GA down regulated PI3K/Akt signaling pathways. These data strongly suggest that up-regulation of VDAC1 by GA may play an important role in GA-induced, inhibitory effects on A549 cell viability.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lixu Jin ◽  
Yuling Chen ◽  
Xinlin Mu ◽  
Qingquan Lian ◽  
Haiyun Deng ◽  
...  

Ovarian cancer is a major cause for death of gynecological cancer patients. The efficacy of traditional surgery and chemotherapy is rather compromised and platinum-resistant cancer recurs. Finding new therapeutic targets is urgently needed to increase the survival rate and to improve life quality of patients with ovarian cancer. In the present work, phosphoproteomic analysis was carried out on untreated and gossypol-treated ovarian cancer cell line, HOC1a. We identified approximately 9750 phosphopeptides from 3030 phosphoproteins, which are involved in diverse cellular processes including cytoskeletal organization, RNA and nucleotide binding, and cell cycle regulation. Upon gossypol treatment, changes in phosphorylation of twenty-nine proteins including YAP1 and AKAP12 were characterized. Western blotting and qPCR analysis were used to determine expression levels of proteins in YAP1-related Hippo pathway showing that gossypol induced upregulation of LATS1, which phosphorylates YAP1 at Ser 61. Furthermore, our data showed that gossypol targets the actin cytoskeletal organization through mediating phosphorylation states of actin-binding proteins. Taken together, our data provide valuable information to understand effects of gossypol on protein phosphorylation and apoptosis of ovarian cancer cells.


2016 ◽  
Vol 39 (3) ◽  
pp. 1098-1110 ◽  
Author(s):  
Chanjuan Li ◽  
Hongjuan Ding ◽  
Jing Tian ◽  
Lili Wu ◽  
Yun Wang ◽  
...  

Background/Aims: Forkhead Box Protein C2 (FOXC2) has been reported to be overexpressed in a variety of human cancers. However, it is unclear whether FOXC2 regulates epithelial-mesenchymal transition (EMT) in CDDP-resistant ovarian cancer cells. The aim of this study is to investigate the effects of FOXC2 on EMT and invasive characteristics of CDDP-resistant ovarian cancer cells and the underlying molecular mechanism. Methods: MTT, Western blot, scratch wound healing, matrigel transwell invasion, attachment and detachment assays were performed to detect half maximal inhibitory concentration (IC50) of CDDP, expression of EMT-related proteins and invasive characteristics in CDDP-resistant ovarian cancer cell line (SKOV3/CDDP) and its parental cell line (SKOV3). Small hairpin RNA (shRNA) was used to knockdown FOXC2 and analyze the effect of FOXC2 knockdown on EMT and invasive characteristics of SKOV3/CDDP cells. Also, the effect of FOXC2 upregulation on EMT and invasive characteristics of SKOV3 cells was analyzed. Furthermore, the molecular mechanism underlying FOXC2-regulating EMT in ovarian cancer cells was determined. Results: Compared with parental SKOV3 cell line, SKOV3/CDDP showed higher IC50 of CDDP (43.26μM) (P<0.01) and acquired EMT phenotype and invasive characteristics. Gain- and loss-of-function assays indicated that shRNA-mediated FOXC2 knockdown could reverse EMT and reduce the capacity of migration, invasion, attachment and detachment in SKOV3/CDDP cell line and upregulation of FOXC2 could induce the reverse effects in parental SKOV3 cell line. Furthermore, it was found that activation of ERK or AKT/GSK-3β signaling pathways was involved in FOXC2-promoting EMT in CDDP-resistant ovarian cancer cells. Conclusions: Taken together, these data demonstrate that FOXC2 may be a promoter of EMT phenotype in CDDP-resistant ovarian cancer cells and a potential therapeutic target for the treatment of advanced ovarian cancer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xuehan Bi ◽  
Xiao Lv ◽  
Dajiang Liu ◽  
Hongtao Guo ◽  
Guang Yao ◽  
...  

AbstractOvarian cancer is a common gynecological malignant tumor with a high mortality rate and poor prognosis. There is inadequate knowledge of the molecular mechanisms underlying ovarian cancer. We examined the expression of methyltransferase-like 3 (METTL3) in tumor specimens using RT-qPCR, immunohistochemistry, and Western blot analysis, and tested the methylation of METTL3 by MSP. Levels of METTL3, miR-1246, pri-miR-1246 and CCNG2 were then analyzed and their effects on cell biological processes were also investigated, using in vivo assay to validate the in vitro findings. METTL3 showed hypomethylation and high expression in ovarian cancer tissues and cells. Hypomethylation of METTL3 was pronounced in ovarian cancer samples, which was negatively associated with patient survival. Decreased METTL3 inhibited the proliferation and migration of ovarian cancer cells and promoted apoptosis, while METTL3 overexpression exerted opposite effects. Mechanistically, METTL3 aggravated ovarian cancer by targeting miR-1246, while miR-1246 targeted and inhibited CCNG2 expression. High expression of METTL3 downregulated CCNG2, promoted the metabolism and growth of transplanted tumors in nude mice, and inhibited apoptosis. The current study highlights the promoting role of METTL3 in the development of ovarian cancer, and presents new targets for its treatment.


2020 ◽  
Vol 15 (1) ◽  
pp. 1934578X2090255
Author(s):  
Eunbi Jo ◽  
Hyun-Jin Jang ◽  
Kyeong E. Yang ◽  
Min S. Jang ◽  
Yang H. Huh ◽  
...  

This study aimed to investigate the effect of Cordyceps militaris extract on the proliferation and apoptosis of carboplatin- resistant SKOV-3 and determine the underlying mechanisms for overcoming carboplatin resistance in human ovarian cancer. We cultured the carboplatin-resistant SKOV-3 cells in vitro until the exponential growth phase and then treated with different concentrations of C. militaris for 24, 48, and 72 hours. We performed cell proliferation assay, cell morphological change assessment using transmission electron microscopy, apoptosis assay, and immunoblotting to measure the protein expression of caspase-3 and -8, poly (ADP-ribose) polymerase (PARP)-1, B-cell lymphoma (Bcl)-2, and activating transcription factor 3 (ATF3)/TP53 signaling-related proteins. As a result, C. militaris reduced the viability of carboplatin-resistant SKOV-3 and induced morphological disruptions in a dose- and time-dependent manner. The gene expression profiles indicated a reprogramming pattern of the previously known and unknown genes and transcription factors associated with the action of TCTN3 on carboplatin-resistant SKOV-3 cells. We also confirmed the C. militaris-induced activation of the ATF3/TP53 pathway. Immunoblotting indicated that cotreatment of C. militaris and carboplatin-mediated ATF3/TP53 upregulation induced apoptosis in the carboplatin-resistant SKOV-3 cells, which are involved in the serial activation of pro-apoptotic proteins, including Bcl-2, Bax, caspases, and PARP-1. Further, when the ATF3 and TP53 expression increased, the CHOP and PUMA expressions were upregulated. Consequently, the upregulated CHOP/PUMA expression activated the positive regulation of the apoptotic signaling pathway. In addition, it decreased the Bcl-2 expression, leading to marked ovarian cancer cells sensitive to carboplatin by enhancing apoptosis. We then corroborated these results using in vivo experiments. Taken together, C. militaris inhibits carboplatin-resistant SKOV-3 cell proliferation and induces apoptosis possibly through ATF3/TP53 signaling upregulation and CHOP/PUMA activation. Therefore, our findings provide new insights into the treatment of carboplatin-resistant ovarian cancer using C. militaris.


Sign in / Sign up

Export Citation Format

Share Document