scholarly journals Progress in the Studies of Triterpene Glycosides From Sea Cucumbers (Holothuroidea, Echinodermata) Between 2017 and 2021

2021 ◽  
Vol 16 (10) ◽  
pp. 1934578X2110539
Author(s):  
Vladimir I. Kalinin ◽  
Alexandra S. Silchenko ◽  
Sergey A. Avilov ◽  
Valentin A. Stonik

Structural diversity of triterpene glycosides produced by sea cucumbers or holothurians (Holothuroidea, Echinodermata) is extremely high, although all of them are either lanostane derivatives or, rarely, products of their molecular rearrangements. The majority of them are holostane derivatives possessing an 18(20)-lanostane lactone as aglycone. They contain carbohydrate chains consisting of one to six monosaccharide units including sulfated ones. The glycosides demonstrate interesting biological activities, mainly caused by membranolytic action, namely cytotoxic, ichthyotoxic, antifungal, and hemolytic properties, as well as a series of additional effects at sub-toxic doses, including immunomodulatory, and cancer preventive. This review summarizes the literature data concerning structures and biological activities of all the new triterpene glycosides isolated from sea cucumbers during 2017 to 2021.

2013 ◽  
Vol 8 (3) ◽  
pp. 1934578X1300800
Author(s):  
Alexandra S. Silchenko ◽  
Anatoly I. Kalinovsky ◽  
Sergey A. Avilov ◽  
Pelageya V. Andryjaschenko ◽  
Pavel S. Dmitrenok ◽  
...  

Five new minor triterpene glycosides, typicosides A1 (1), A2 (2), B1 (3), C1 (4) and C2 (5), along with two known glycosides, intercedenside A and holothurin B3, have been isolated from the sea cucumber Actinocucumis typica. Structures of the glycosides were elucidated by 2D NMR spectroscopy and MS. Glycosides 1–5 are linear mono- and disulfated tetraosides differing from each other in both aglycone structures and monosaccharide composition of the carbohydrate chains. Typicosides A1 (1) and A2 (2) have identical monosulfated carbohydrate moieties with a xylose residue as the third monosaccharide unit and differ from each other in aglycon structures. Typicoside B1 (3) has glucose as the third monosaccharide residue. Typicosides C1 (4) and C2 (5) contain the same disulfated carbohydrate chains and differ from each other in structures of aglycone side chains. Antifungal activity of glycosides 1–5 against three species of fungi along with cytotoxic activity against mouse spleen lymphocytes and mouse Ehrlich carcinoma cells (ascite form), as well as hemolytic activities against mouse erythrocytes have been studied. All new glycosides, except for typicoside C1 (4), containing a hydroxy-group in the aglycone side chain, demonstrate rather strong hemolytic and cytotoxic activities.


2015 ◽  
Vol 414 ◽  
pp. 22-31 ◽  
Author(s):  
Alexandra S. Silchenko ◽  
Anatoly I. Kalinovsky ◽  
Sergey A. Avilov ◽  
Pelageya V. Andryjaschenko ◽  
Pavel S. Dmitrenok ◽  
...  

2015 ◽  
Vol 10 (1) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Vladimir I. Kalinin ◽  
Sergey A. Avilov ◽  
Alexandra S. Silchenko ◽  
Valentin A. Stonik

Triterpene glycosides are characteristic metabolites of sea cucumbers (Holothurioidea, Echinodermata). The majority of the glycosides belong to the holostane type {lanostane derivatives with an 18(20)-lactone}. Carbohydrate chains of these glycosides contain xylose, glucose, quinovose, 3- O-methylglucose, and, rarely, 3- O-methylxylose, 3- O-methylglucuronic acid, 3- O-methylquinovose, and 6- O-acetyl-glucose. The glycosides are specific for genera, groups of genera and even for species. The advantages and problems in the use of triterpene glycosides as taxonomic markers in the systematics of sea cucumbers are discussed.


2020 ◽  
Vol 17 (9) ◽  
pp. 1102-1116
Author(s):  
Sudip Kumar Mandal ◽  
Utsab Debnath ◽  
Amresh Kumar ◽  
Sabu Thomas ◽  
Subhash Chandra Mandal ◽  
...  

Background and Introduction: Sesquiterpene lactones are a class of secondary metabolite that contains sesquiterpenoids and lactone ring as pharmacophore moiety. A large group of bioactive secondary metabolites such as phytopharmaceuticals belong to this category. From the Asteraceae family-based medicinal plants, more than 5,000 sesquiterpene lactones have been reported so far. Sesquiterpene lactone-based pharmacophore moieties hold promise for broad-spectrum biological activities against cancer, inflammation, parasitic, bacterial, fungal, viral infection and other functional disorders. Moreover, these moiety based phytocompounds have been highlighted with a new dimension in the natural drug discovery program worldwide after the 2015 Medicine Nobel Prize achieved by the Artemisinin researchers. Objective: These bitter substances often contain an α, β-unsaturated-γ-lactone as a major structural backbone, which in recent studies has been explored to be associated with anti-tumor, cytotoxic, and anti-inflammatory action. Recently, the use of sesquiterpene lactones as phytomedicine has been increased. This study will review the prospect of sesquiterpene lactones against inflammation and cancer. Methods: Hence, we emphasized on the different features of this moiety by incorporating its structural diversity on biological activities to explore structure-activity relationships (SAR) against inflammation and cancer. Results: How the dual mode of action such as anti-inflammatory and anti-cancer has been exhibitedby these phytopharmaceuticals will be forecasted in this study. Furthermore, the correlation of anti-inflammatory and anti-cancer activity executed by the sesquiterpene lactones for fruitful phytotherapy will also be revealed in the present review in the milieu of pharmacophore activity relation and pharmacodynamics study as well. Conclusion: So, these metabolites are paramount in phytopharmacological aspects. The present discussion on the future prospect of this moiety based on the reported literature could be a guide for anti-inflammatory and anti-cancer drug discovery programs for the upcoming researchers.


2021 ◽  
Vol 22 (1) ◽  
pp. 403
Author(s):  
Fanni Tóth ◽  
Edina Katalin Cseh ◽  
László Vécsei

The incidence of neurodegenerative diseases has increased greatly worldwide due to the rise in life expectancy. In spite of notable development in the understanding of these disorders, there has been limited success in the development of neuroprotective agents that can slow the progression of the disease and prevent neuronal death. Some natural products and molecules are very promising neuroprotective agents because of their structural diversity and wide variety of biological activities. In addition to their neuroprotective effect, they are known for their antioxidant, anti-inflammatory and antiapoptotic effects and often serve as a starting point for drug discovery. In this review, the following natural molecules are discussed: firstly, kynurenic acid, the main neuroprotective agent formed via the kynurenine pathway of tryptophan metabolism, as it is known mainly for its role in glutamate excitotoxicity, secondly, the dietary supplement pantethine, that is many sided, well tolerated and safe, and the third molecule, α-lipoic acid is a universal antioxidant. As a conclusion, because of their beneficial properties, these molecules are potential candidates for neuroprotective therapies suitable in managing neurodegenerative diseases.


2021 ◽  
Vol 7 (7) ◽  
pp. 541
Author(s):  
Lúcia P. S. Pimenta ◽  
Dhionne C. Gomes ◽  
Patrícia G. Cardoso ◽  
Jacqueline A. Takahashi

Filamentous fungi are known to biosynthesize an extraordinary range of azaphilones pigments with structural diversity and advantages over vegetal-derived colored natural products such agile and simple cultivation in the lab, acceptance of low-cost substrates, speed yield improvement, and ease of downstream processing. Modern genetic engineering allows industrial production, providing pigments with higher thermostability, water-solubility, and promising bioactivities combined with ecological functions. This review, covering the literature from 2020 onwards, focuses on the state-of-the-art of azaphilone dyes, the global market scenario, new compounds isolated in the period with respective biological activities, and biosynthetic pathways. Furthermore, we discussed the innovations of azaphilone cultivation and extraction techniques, as well as in yield improvement and scale-up. Potential applications in the food, cosmetic, pharmaceutical, and textile industries were also explored.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1898
Author(s):  
Fauzia Izzati ◽  
Mega Ferdina Warsito ◽  
Asep Bayu ◽  
Anggia Prasetyoputri ◽  
Akhirta Atikana ◽  
...  

Marine invertebrates have been reported to be an excellent resource of many novel bioactive compounds. Studies reported that Indonesia has remarkable yet underexplored marine natural products, with a high chemical diversity and a broad spectrum of biological activities. This review discusses recent updates on the exploration of marine natural products from Indonesian marine invertebrates (i.e., sponges, tunicates, and soft corals) throughout 2007–2020. This paper summarizes the structural diversity and biological function of the bioactive compounds isolated from Indonesian marine invertebrates as antimicrobial, antifungal, anticancer, and antiviral, while also presenting the opportunity for further investigation of novel compounds derived from Indonesian marine invertebrates.


Planta Medica ◽  
2021 ◽  
Author(s):  
Jerald Nair ◽  
Johannes Van Staden

The Amaryllidaceae features prominently amongst bulbous flowering plant families. Accommodating about a third of its species, South Africa affords a sound basis for Amaryllidaceae plant research. Boophone, Nerine, Crossyne, Clivia, Cryptostephanus, Haemanthus and Scadoxus have been well-represented in such endeavors. The account herein summarizes the studies undertaken between 2013-2020 on these genera in regards to their chemical and biological characteristics. A total of 136 compounds comprising 63 alkaloids and 73 non-alkaloid entities were described during this period from eighteen members of the title genera. The alkaloids were reflective of the structural diversity found in eight isoquinoline alkaloid groups of the Amaryllidaceae. Of these, the crinane (29 compounds), lycorane and homolycorine (11 compounds each) groups were the most-represented. The non-alkaloid substances were embracive of the same number of unrelated groups including, acids, phenolics, flavonoids and triterpenoids. A wide variety of assays were engaged to ascertain the biological activities of the isolated compounds, notably in regards to cancer and motorneuron-related diseases. There were also attempts made to determine the antimicrobial, anti-inflammatory and antioxidant effects of some of the substances. New information has also emerged on the herbicidal, insecticidal and plant growth regulatory effects of selected alkaloid principles. Coupled to the biological screening measures were in instances probes made to establish the molecular basis to some of the activities, particularly in relation to cancer and Parkinsonʹs disease.


2021 ◽  
Vol 18 ◽  
Author(s):  
Meenu Devi ◽  
Shivangi Jaiswal ◽  
Sonika Jain ◽  
Navjeet Kaur ◽  
Jaya Dwivedi

: Nitrogen-containing heterocycles attract the attention of chemists due to their multifarious activities. Amongst all, pyrimidine plays a central role and exhibits a broad spectrum of biological activities. Literature is replete with the various aspects of synthetic development in pyrimidine chemistry for a wide array of applications. It aroused our interest to compile various novel and efficient synthetic approaches towards the synthesis of pyrimidine and its derivatives. Pyrimidine derivatives are broadly useful as therapeutic agents, owing to their high degree of structural diversity. They have been recorded to possess a diverse range of therapeutic activities, viz. anticancer, anti-inflammatory, anti-HIV etc.


Sign in / Sign up

Export Citation Format

Share Document