scholarly journals Role of Mitochondria in Physiology of Chondrocytes and Diseases of Osteoarthritis and Rheumatoid Arthritis

Cartilage ◽  
2021 ◽  
pp. 194760352110638
Author(s):  
Shiyi Kan ◽  
Mengmeng Duan ◽  
Yang Liu ◽  
Chunli Wang ◽  
Jing Xie

Purpose of Review Mitochondria are recognized to be one of the most important organelles in chondrocytes for their role in triphosphate (ATP) generation through aerobic phosphorylation. Mitochondria also participate in many intracellular processes involving modulating reactive oxygen species (ROS), responding to instantaneous hypoxia stress, regulating cytoplasmic transport of calcium ion, and directing mitophagy to maintain the homeostasis of individual chondrocytes. Designs To summarize the specific role of mitochondria in chondrocytes, we screened related papers in PubMed database and the search strategy is ((mitochondria) AND (chondrocyte)) AND (English [Language]). The articles published in the past 5 years were included and 130 papers were studied. Results In recent years, the integrity of mitochondrial structure has been regarded as a prerequisite for normal chondrocyte survival and defect in mitochondrial function has been found in cartilage-related diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, the understanding of mitochondria in cartilage is still largely limited. The mechanism on how the changes in mitochondrial structure and function directly lead to the occurrence and development of cartilage-related diseases remains to be elusive. Conclusion This review aims to summarize the role of mitochondria in chondrocytes under the physiological and pathological changes from ATP generation, calcium homeostasis, redox regulation, mitophagy modulation, mitochondria biogenesis to immune response activation. The enhanced understanding of molecular mechanisms in mitochondria might offer some new cues for cartilage remodeling and pathological intervention.

2020 ◽  
Author(s):  
Huascar Pedro Ortuste Quiroga ◽  
Shingo Yokoyama ◽  
Massimo Ganassi ◽  
Kodai Nakamura ◽  
Tomohiro Yamashita ◽  
...  

AbstractMechanical stimuli such as stretch and resistance training are essential to regulate growth and function of skeletal muscle. However, the molecular mechanisms involved in sensing mechanical stress remain unclear. Here, the purpose of this study was to investigate the role of the mechanosensitive ion channel Piezo1 during myogenic progression. Muscle satellite cell-derived myoblasts and myotubes were modified with stretch, siRNA knockdown and agonist-induced activation of Piezo1. Direct manipulation of Piezo1 modulates terminal myogenic progression. Piezo1 knockdown suppressed myoblast fusion during myotube formation and maturation. This was accompanied by downregulation of the fusogenic protein Myomaker. Piezo1 knockdown also lowered Ca2+ influx in response to stretch. Conversely Piezo1 activation stimulated fusion and increased Ca2+ influx in response to stretch. These evidences indicate that Piezo1 is essential for myotube formation and maturation, which may have implications for msucular dystrophy prevention through its role as a mechanosensitive Ca2+ channel.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ming-Shien Wen ◽  
Chao-Yung Wang ◽  
Jih-Kai Yeh ◽  
Chun-Chi Chen ◽  
Ming-Lung Tsai ◽  
...  

Abstract Background Asprosin is a novel fasting glucogenic adipokine discovered in 2016. Asprosin induces rapid glucose releases from the liver. However, its molecular mechanisms and function are still unclear. Adaptation of energy substrates from fatty acid to glucose is recently considered a novel therapeutic target in heart failure treatment. We hypothesized that the asprosin is able to modulate cardiac mitochondrial functions and has important prognostic implications in dilated cardiomyopathy (DCM) patients. Methods We prospectively enrolled 50 patients (86% male, mean age 55 ± 13 years) with DCM and followed their 5-year major adverse cardiovascular events from 2012 to 2017. Comparing with healthy individuals, DCM patients had higher asprosin levels (191.2 versus 79.7 ng/mL, P < 0.01). Results During the 5-year follow-up in the study cohort, 16 (32.0%) patients experienced adverse cardiovascular events. Patients with lower asprosin levels (< 210 ng/mL) were associated with increased risks of adverse clinical outcomes with a hazard ratio of 7.94 (95% CI 1.88–33.50, P = 0.005) when compared patients with higher asprosin levels (≥ 210 ng/mL). Using cardiomyoblasts as a cellular model, we showed that asprosin prevented hypoxia-induced cell death and enhanced mitochondrial respiration and proton leak under hypoxia. Conclusions In patients with DCM, elevated plasma asprosin levels are associated with less adverse cardiovascular events in five years. The underlying protective mechanisms of asprosin may be linked to its functions relating to enhanced mitochondrial respiration under hypoxia.


2019 ◽  
Vol 31 (7) ◽  
pp. 1228
Author(s):  
Jane C. Fenelon ◽  
Bruce D. Murphy

Implantation is essential for the establishment of a successful pregnancy, and the preimplantation period plays a significant role in ensuring implantation occurs in a timely and coordinated manner. This requires effective maternal–embryonic signalling, established during the preimplantation period, to synchronise development. Although multiple factors have been identified as present during this time, the exact molecular mechanisms involved are unknown. Polyamines are small cationic molecules that are ubiquitously expressed from prokaryotes to eukaryotes. Despite being first identified over 300 years ago, their essential roles in cell proliferation and growth, including cancer, have only been recently recognised, with new technologies and interest resulting in rapid expansion of the polyamine field. This review provides a summary of our current understanding of polyamine synthesis, regulation and function with a focus on recent developments demonstrating the requirements for polyamines during the establishment of pregnancy up to the implantation stage, in particular the role of polyamines in the control of embryonic diapause and the identification of an alternative pathway for their synthesis in sheep pregnancy. This, along with other novel discoveries, provides new insights into the control of the peri-implantation period in mammals and highlights the complexities that exist in regulating this critical period of pregnancy.


2012 ◽  
Vol 18 (8) ◽  
pp. 1058-1067 ◽  
Author(s):  
J van Horssen ◽  
ME Witte ◽  
O Ciccarelli

Axonal injury is a key feature of multiple sclerosis (MS) pathology and is currently seen as the main correlate for permanent clinical disability. Although little is known about the pathogenetic mechanisms that drive axonal damage and loss, there is accumulating evidence highlighting the central role of mitochondrial dysfunction in axonal degeneration and associated neurodegeneration. The aim of this topical review is to provide a concise overview on the involvement of mitochondrial dysfunction in axonal damage and destruction in MS. Hereto, we will discuss putative pathological mechanisms leading to mitochondrial dysfunction and recent imaging studies performed in vivo in patients with MS. Moreover, we will focus on molecular mechanisms and novel imaging studies that address the role of mitochondrial metabolism in tissue repair. Finally, we will briefly review therapeutic strategies aimed at improving mitochondrial metabolism and function under neuroinflammatory conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Tomasz Boczek ◽  
Malwina Lisek ◽  
Bozena Ferenc ◽  
Antoni Kowalski ◽  
Magdalena Wiktorska ◽  
...  

A close link between Ca2+, ATP level, and neurogenesis is apparent; however, the molecular mechanisms of this relationship have not been completely elucidated. Transient elevations of cytosolic Ca2+may boost ATP synthesis, but ATP is also consumed by ion pumps to maintain a low Ca2+in cytosol. In differentiation process plasma membrane Ca2+ATPase (PMCA) is considered as one of the major players for Ca2+homeostasis. From four PMCA isoforms, the fastest PMCA2 and PMCA3 are expressed predominantly in excitable cells. In the present study we assessed whether PMCA isoform composition may affect energy balance in differentiating PC12 cells. We found that PMCA2-downregulated cells showed higher basal O2consumption, lower NAD(P)H level, and increased activity of ETC. These changes associated with higher[Ca2+]cresulted in elevated ATP level. Since PMCA2-reduced cells demonstrated greatest sensitivity to ETC inhibition, we suppose that the main source of energy for PMCA isoforms 1, 3, and 4 was oxidative phosphorylation. Contrary, cells with unchanged PMCA2 expression exhibited prevalence of glycolysis in ATP generation. Our results with PMCA2- or PMCA3-downregulated lines provide an evidence of a novel role of PMCA isoforms in regulation of bioenergetic pathways, and mitochondrial activity and maintenance of ATP level during PC12 cells differentiation.


FEBS Letters ◽  
2017 ◽  
Vol 592 (8) ◽  
pp. 1273-1290 ◽  
Author(s):  
Writoban Basu Ball ◽  
John K. Neff ◽  
Vishal M. Gohil

2015 ◽  
Vol 308 (4) ◽  
pp. H259-H268 ◽  
Author(s):  
Yasuhiro Maejima ◽  
Yun Chen ◽  
Mitsuaki Isobe ◽  
Åsa B. Gustafsson ◽  
Richard N. Kitsis ◽  
...  

Dysregulation of autophagy, an evolutionarily conserved process for degradation of long-lived proteins and organelles, has been implicated in the pathogenesis of human disease. Recent research has uncovered pathways that control autophagy in the heart and molecular mechanisms by which alterations in this process affect cardiac structure and function. Although initially thought to be a nonselective degradation process, autophagy, as it has become increasingly clear, can exhibit specificity in the degradation of molecules and organelles, such as mitochondria. Furthermore, it has been shown that autophagy is involved in a wide variety of previously unrecognized cellular functions, such as cell death and metabolism. A growing body of evidence suggests that deviation from appropriate levels of autophagy causes cellular dysfunction and death, which in turn leads to heart disease. Here, we review recent advances in understanding the role of autophagy in heart disease, highlight unsolved issues, and discuss the therapeutic potential of modulating autophagy in heart disease.


2015 ◽  
Vol 396 (9-10) ◽  
pp. 1043-1058 ◽  
Author(s):  
Kristina Puth ◽  
Harald F. Hofbauer ◽  
James P. Sáenz ◽  
Robert Ernst

Abstract Biological membranes are dynamic and complex assemblies of lipids and proteins. Eukaryotic lipidomes encompass hundreds of distinct lipid species and we have only begun to understand their role and function. This review focuses on recent advances in the field of lipid sensors and discusses methodical approaches to identify and characterize putative sensor domains. We elaborate on the role of integral and conditionally membrane-associated sensor proteins, their molecular mechanisms, and identify open questions in the emerging field of membrane homeostasis.


Open Biology ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 200360
Author(s):  
Nargess Khalilgharibi ◽  
Yanlan Mao

The basement membrane (BM) is a special type of extracellular matrix that lines the basal side of epithelial and endothelial tissues. Functionally, the BM is important for providing physical and biochemical cues to the overlying cells, sculpting the tissue into its correct size and shape. In this review, we focus on recent studies that have unveiled the complex mechanical properties of the BM. We discuss how these properties can change during development, homeostasis and disease via different molecular mechanisms, and the subsequent impact on tissue form and function in a variety of organisms. We also explore how better characterization of BM mechanics can contribute to disease diagnosis and treatment, as well as development of better in silico and in vitro models that not only impact the fields of tissue engineering and regenerative medicine, but can also reduce the use of animals in research.


Sign in / Sign up

Export Citation Format

Share Document