Solar power for some? Energy transition injustices in Kerala, India

2021 ◽  
pp. 251484862110469
Author(s):  
Heather Plumridge Bedi

The Indian government advocates for a major shift from national reliance on coal to more renewable energy sources. While these aspirations are laudable, a political ecology review reveals the uneven power relations associated with the introduction of renewable energy in the southern Indian state of Kerala. Drawing from fieldwork, research traces how Kerala government solar projects, including schemes to promote rooftop solar, prioritize middle- and upper-class consumers. Historically marginalized communities, including people living below the poverty level and Adivasis (indigenous peoples), are not a priority for the state agency implementing renewable energy and thus are not beneficiaries of cleaner energy. This disconnected approach builds from and exacerbates historical political and resource inequalities and enables the persistence of social and environmental injustices, even while moving towards a lower-carbon future. This model does not allow for all residents to actively engage in decision-making about energy processes and proves to be a missed opportunity to think holistically about development and energy in tandem. Energy democracy provides ideas to disturb this uneven power structure, with cooperatives being one possible way to implement this change. As the case of Kerala underscores, India may undergo an energy transition, but it will not be a just energy transition without significant changes.

2021 ◽  
pp. 251484862110249
Author(s):  
Siddharth Sareen

Increasing recognition of the irrefutable urgency to address the global climate challenge is driving mitigation efforts to decarbonise. Countries are setting targets, technological innovation is making renewable energy sources competitive and fossil fuel actors are leveraging their incumbent privilege and political reach to modulate energy transitions. As techno-economic competitiveness is rapidly reconfigured in favour of sources such as solar energy, governance puzzles dominate the research frontier. Who makes key decisions about decarbonisation based on what metrics, and how are consequent benefits and burdens allocated? This article takes its point of departure in ambitious sustainability metrics for solar rollout that Portugal embraced in the late 2010s. This southwestern European country leads on hydro and wind power, and recently emerged from austerity politics after the 2008–2015 recession. Despite Europe’s best solar irradiation, its big solar push only kicked off in late 2018. In explaining how this arose and unfolded until mid-2020 and why, the article investigates what key issues ambitious rapid decarbonisation plans must address to enhance social equity. It combines attention to accountability and legitimacy to offer an analytical framework geared at generating actionable knowledge to advance an accountable energy transition. Drawing on empirical study of the contingencies that determine the implementation of sustainability metrics, the article traces how discrete acts legitimate specific trajectories of territorialisation by solar photovoltaics through discursive, bureaucratic, technocratic and financial practices. Combining empirics and perspectives from political ecology and energy geographies, it probes the politics of just energy transitions to more low-carbon and equitable societal futures.


2021 ◽  
Vol 1 (11) ◽  
pp. 75-82
Author(s):  
Elena V. Karanina ◽  
◽  
Maxim A. Bortnikov ◽  

Many leading world powers are already setting ambitious goals to achieve zero CO2 emis-sions in the electric power industry through the use of renewable energy sources (RES) in the near future. In Russia, this type of generation also received state support, however, more modest, due to the low intercon-nection between Russia and renewable energy sources in terms of the state's energy security. The purpose of the study is to determine the effectiveness of the existing support for renewable energy in the Russian Federation, to assess the feasibility of building these facilities in our country, as well as to provide a scientifically substantiated proposal for alternative ways of developing the industry. The paper analyzes and summarizes the economic aspects of investment and operating activities of wind, solar and small hydropower in Russia. As a result, it was concluded that the pace of development chosen by the Ministry of Energy of the Russian Federation can be considered correct, but it is necessary to adjust the support program and diversify in terms of the subjectivity of the construction of new generating facilities based on RES.


2021 ◽  
Vol 2 (1) ◽  
pp. 79-97
Author(s):  
Melis Aras

The energy transition in Europe requires not only the implementation of technological innovations to reduce carbon emissions but also the decentralised extension of these innovations throughout the continent, as demonstrated by the ‘Clean Energy for All Europeans’ package. However, decentralised energy generation, and specifically electricity generation, as it gives rise to new players and interactions, also requires a review of the energy planning process. In this sense, governance becomes the key concept for understanding the implementation of the energy transition in a territory. This is particularly visible in a cross-border setting, especially considering cross-border cooperation in the development of renewable energy sources (RES) provides the necessary elements to determine the criteria of local regulation between the different levels of governance. In light of the current legal framework in France, this paper presents the institutional framework of the multi-level governance of the RES development planning process. It concludes that it is quite conceivable for the rationales of governance at the local level (decentralisation) and the large-scale operation of a large interconnected network (Europeanisation) to coexist.


Author(s):  
Igor Tyukhov ◽  
Hegazy Rezk ◽  
Pandian Vasant

This chapter is devoted to main tendencies of optimization in photovoltaic (PV) engineering showing the main trends in modern energy transition - the changes in the composition (structure) of primary energy supply, the gradual shift from a traditional (mainly based on fossil fuels) energy to a new stage based on renewable energy systems from history to current stage and to future. The concrete examples (case studies) of optimization PV systems in different concepts of using from power electronics (particularly maximum power point tracking optimization) to implementing geographic information system (GIS) are considered. The chapter shows the gradual shifting optimization from specific quite narrow areas to the new stages of optimization of the very complex energy systems (actually smart grids) based on photovoltaics and also other renewable energy sources and GIS.


2021 ◽  
Vol 899 (1) ◽  
pp. 012048
Author(s):  
Evangelia Karasmanaki

Abstract Examining willingness-to-pay (WTP) for renewable energy sources (RES) as well as views on energy topics can enable policymakers to design effective measures for facilitating the transition from fossil fuels to a renewable-based energy system. The aim of this study was to investigate environmental students’ willingness-to-pay for renewables and their views on various energy topics. Results showed that respondents preferred renewable-based electricity production to conventional energy production while solar energy emerged as the most preferred renewable type. In addition, most respondents were willing to pay for renewable energy but would pay relatively low sums of money per month. Moreover, respondents were divided over whether new lignite plants should be constructed in Greece. Finally, social media and special websites were the most favored media of daily information.


2020 ◽  
Vol 42 (4) ◽  
pp. 93-101
Author(s):  
T.A. Zheliezna ◽  
A.I. Bashtovyi

The aim of the work is to analyze possible ways of decarbonization of the EU heat supply sector. The task of the work is to identify the most promising areas and develop appropriate recommendations for Ukraine. The heat supply sector of the EU and Ukraine needs decarbonization, for which there is a big potential and different areas of implementation of relevant measures. In Europe, such a strategy is set out in the Roadmap for decarbonization of the EU heating sector until 2050, the main provisions of which are in line with objectives of the European Green Deal and the EU Strategy on Heating and Cooling. European experts have developed the concept of a smart energy system, which was taken into account when preparing the Roadmap for decarbonization of the EU heating sector until 2050. A number of carried out studies have shown that a smart energy system with 50% district heating integrated with other parts of the overall energy system is more efficient than a conventional energy system or the one based on decentralized heat supply, in terms of the possibility of using a high share of renewable energy. It is recommended for Ukraine to finalize the Concept of green energy transition until 2050, taking into account European approaches to the development of heating systems and the use of modern biofuels. It is also recommended to expand the current Concept of heat supply of Ukraine to the level of a strategy with an emphasis on the development of district heating systems, wide involvement of renewable energy sources and new technologies.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4812
Author(s):  
Loris Di Natale ◽  
Luca Funk ◽  
Martin Rüdisüli ◽  
Bratislav Svetozarevic ◽  
Giacomo Pareschi ◽  
...  

Energy systems are undergoing a profound transition worldwide, substituting nuclear and thermal power with intermittent renewable energy sources (RES), creating discrepancies between the production and consumption of electricity and increasing their dependence on greenhouse gas (GHG) intensive imports from neighboring energy systems. In this study, we analyze the concurrent electrification of the mobility sector and investigate the impact of electric vehicles (EVs) on energy systems with a large share of renewable energy sources. In particular, we build an optimization framework to assess how Evs could compete and interplay with other energy storage technologies to minimize GHG-intensive electricity imports, leveraging the installed Swiss reservoir and pumped hydropower plants (PHS) as examples. Controlling bidirectional EVs or reservoirs shows potential to decrease imported emissions by 33–40%, and 60% can be reached if they are controlled simultaneously and with the support of PHS facilities when solar PV panels produce a large share of electricity. However, even if vehicle-to-grid (V2G) can support the energy transition, we find that its benefits will reach their full potential well before EVs penetrate the mobility sector to a large extent and that EVs only contribute marginally to long-term energy storage. Hence, even with a widespread adoption of EVs, we cannot expect V2G to single-handedly solve the growing mismatch problem between the production and consumption of electricity.


2021 ◽  
Vol 2 (43) ◽  
pp. 41-47
Author(s):  
Oleg A. Roshchin ◽  

The features of Russia is the low population density on huge, poorly developed lands in terms of production. About 20 million people live in the territory where there is no centralized power supply, power supply is organized on generating systems running on imported fuel. (Research purpose) The research purpose is in studying the prospects for the development of microgrids based on the use of alternative energy generating systems of renewable energy sources using a micro-gas turbine plant as the base generator, which is the source of the reference voltage of microgrid based on single-wire resonant distribution networks of a new generation in Russia. (Materials and methods) The article presents the prospects for the development of microgrids based on material taken from open sources. Authors applied the methods of scientific analysis of events, facts, materials, and conclusions. (Results and discussions) The article shows that the world energy system evolutionarily enters a new fourth stage of fundamental transformation, called the "Energy Transition". The creation of microgrids based on renewable energy sources with a basic micro-gas turbine unit and single-wire resonant distribution networks of a new generation is an indisputable proof of this energy transition. (Conclusions) In many countries of the world, there is an increase in the share of distributed generation based on renewable energy sources, the introduction of new centralized generation capacities is reduced, investments in the construction of large power plants and new high-voltage transmission lines are reduced due to the development of distributed generation. Distributed generation contributes to the rapid expansion of electricity production without the need for additional development of the power grid infrastructure.


Sign in / Sign up

Export Citation Format

Share Document