scholarly journals Negative staining of whole cells: transmission electron microscopy of peripheral organelles in rat venous endothelial cells.

1978 ◽  
Vol 26 (5) ◽  
pp. 417-421
Author(s):  
D K Racker

The study of whole negatively stained cells has revealed details of cellular organelles in rat venous endothelial cells. In particular, details of surface membrane organelles and small tubular structures were demonstrated. The surface membrane organelles which appeared "vesicular-like" were found to be connected with small tubular attachments. These findings were correlated with those described by other techniques. It is significant that this simple technique appears to permit the demonstration of fine details of three-dimensional cytoplasmic structures.

2013 ◽  
Vol 19 (1) ◽  
pp. 22-29 ◽  
Author(s):  
David B. Carlson ◽  
Jeff Gelb ◽  
Vadim Palshin ◽  
James E. Evans

AbstractHere we present a novel laboratory-based cryogenic soft X-ray microscope for whole cell tomography of frozen hydrated samples. We demonstrate the capabilities of this compact cryogenic microscope by visualizing internal subcellular structures of Saccharomyces cerevisiae cells. The microscope is shown to achieve better than 50 nm half-pitch spatial resolution with a Siemens star test sample. For whole biological cells, the microscope can image specimens up to 5 μm thick. Structures as small as 90 nm can be detected in tomographic reconstructions following a low cumulative radiation dose of only 7.2 MGy. Furthermore, the design of the specimen chamber utilizes a standard sample support that permits multimodal correlative imaging of the exact same unstained yeast cell via cryo-fluorescence light microscopy, cryo-soft X-ray microscopy, and cryo-transmission electron microscopy. This completely laboratory-based cryogenic soft X-ray microscope will enable greater access to three-dimensional ultrastructure determination of biological whole cells without chemical fixation or physical sectioning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soha A. Soliman

AbstractThe current study investigated role of telocytes (TCs) in angiogenesis during embryonic development of quail using immunohistochemistry (IHC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The angiogenic apparatus consisted of TCs, endothelial cells, and macrophages. TCs were identified morphologically by their telopodes and podoms using TEM and SEM and immunohistochemically using CD34, and vascular endothelial growth factor (VEGF). TCs also expressed CD68. TCs formed a three-dimensional network and established direct contact with blood vessels, sprouting endothelial cells, and active macrophages, while exerting their effect through paracrine signaling. VEGF was also expressed by endothelial cells and macrophages. Matrix metalloproteinase–9 (MMP-9) was expressed by TCs, endothelial cells, and macrophages. In conclusion, the expression of VEGF by TCs, endothelial cells, and macrophages is required for the proliferation and migration of endothelial cells and vascular growth. The expression of MMP-9 by TCs, endothelial cells, and macrophages is essential for the degradation of extracellular matrix (ECM) components during neoangiogenesis. Macrophages may facilitate phagocytosis and elimination of the degraded ECM components.


1976 ◽  
Vol 22 (10) ◽  
pp. 1518-1521 ◽  
Author(s):  
Ellena M. Peterson ◽  
Robert J. Hawley ◽  
Richard A. Calderone

Protoplasts–spheroplasts of a human isolate of Cryptococcus neoformans were prepared using the gut enzyme of Helix pomatia. The induction process, as studied by transmission electron microscopy, occurred in two stages. Early in the induction process, protoplasts–spheroplasts emerged from whole cells through a break in the cell wall – capsule envelope. Later, a gradual dissolution of the entire cell wall occurred releasing the intact protoplast–spheroplast. A comparison of protoplasts–spheroplasts with normal untreated cells revealed that the degree of cellular vacuolation as well as the resolution of cellular organelles was similar.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
C. N. Sun ◽  
J. J. Ghidoni

Endothelial cells in longitudinal and cross sections of aortas from 3 randomly selected “normal” mongrel dogs were studied by electron microscopy. Segments of aorta were distended with cold cacodylate buffered 5% glutaraldehyde for 10 minutes prior to being cut into small, well oriented tissue blocks. After an additional 1-1/2 hour period in glutaraldehyde, the tissue blocks were well rinsed in buffer and post-fixed in OsO4. After dehydration they were embedded in a mixture of Maraglas, D.E.R. 732, and DDSA.Aldehyde fixation preserves the filamentous and tubular structures (300 Å and less) for adequate demonstration and study. The functional significance of filaments and microtubules has been recently discussed by Buckley and Porter; the precise roles of these cytoplasmic components remains problematic. Endothelial cells in canine aortas contained an abundance of both types of structures.


Author(s):  
W. D. Cooper ◽  
C. S. Hartley ◽  
J. J. Hren

Interpretation of electron microscope images of crystalline lattice defects can be greatly aided by computer simulation of theoretical contrast from continuum models of such defects in thin foils. Several computer programs exist at the present time, but none are sufficiently general to permit their use as an aid in the identification of the range of defect types encountered in electron microscopy. This paper presents progress in the development of a more general computer program for this purpose which eliminates a number of restrictions contained in other programs. In particular, the program permits a variety of foil geometries and defect types to be simulated.The conventional approximation of non-interacting columns is employed for evaluation of the two-beam dynamical scattering equations by a piecewise solution of the Howie-Whelan equations.


Author(s):  
M. K. Lamvik

When observing small objects such as cellular organelles by scanning electron microscopy, it is often valuable to use the techniques of transmission electron microscopy. The common practice of mounting and coating for SEM may not always be necessary. These possibilities are illustrated using vertebrate skeletal muscle myofibrils.Micrographs for this study were made using a Hitachi HFS-2 scanning electron microscope, with photographic recording usually done at 60 seconds per frame. The instrument was operated at 25 kV, with a specimen chamber vacuum usually better than 10-7 torr. Myofibrils were obtained from rabbit back muscle using the method of Zak et al. To show the component filaments of this contractile organelle, the myofibrils were partially disrupted by agitation in a relaxing medium. A brief centrifugation was done to clear the solution of most of the undisrupted myofibrils before a drop was placed on the grid. Standard 3 mm transmission electron microscope grids covered with thin carbon films were used in this study.


1981 ◽  
Author(s):  
A Sturk ◽  
L M Burt ◽  
T Hakvoort ◽  
J W ten cate ◽  
N Crawford

Platelet concentrates were stored for one, two or three days at 4°C (unagitated) or room temperature (unagitated and linearly agitated). The morphology of platelets in platelet concentrates, directly after twice washing at room temperature and after 60 min incubation of the washed platelets at 37°C was investigated by both scanning and transmission electron microscopy.Platelets in the freshly prepared concentrates are slightly activated, i.e. show some pseudopod formation. At 4°C platelets rapidly loose their discoid shape. After three days their surface membrane shows extensive folding, they are slightly vacuolated and have lost most of their granules. Incubation of these cold-stored platelets at 37°C does not induce reversal to the discoid shape.Room temperature storage results in reversal of the slight initial platelet activation. After three days unagitated platelets are slightly more vacuolated than platelets stored with agitation. Room temperature storage usually results in remarkably well preserved, discoid platelets. Occasionally however, agitated platelet concentrates contain a high proportion of odd shaped cells. As platelets stored at 4°C did not became discoid after incubation at 37°, the altered membrane structure could provide an explanation for their short survival upon transfusion. Our results also provide a morphological correlation with the slightly better recovery and survival of platelets stored agitated vs.- non-agitated platelets at room temperature.


2017 ◽  
Vol 23 (3) ◽  
pp. 661-667 ◽  
Author(s):  
Yue Li ◽  
Di Zhang ◽  
Ilker Capoglu ◽  
Karl A. Hujsak ◽  
Dhwanil Damania ◽  
...  

AbstractEssentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.


Sign in / Sign up

Export Citation Format

Share Document