scholarly journals Polycaprolactone/calcium sulfate whisker/barium titanate piezoelectric ternary composites for tissue reconstruction

2020 ◽  
Vol 29 ◽  
pp. 2633366X1989792
Author(s):  
JinYan Liu ◽  
XiaoYue Hu ◽  
HuMin Dai ◽  
Zhi San ◽  
FuKe Wang ◽  
...  

The piezoelectric materials with excellent bioactivity have attracted more attentions recently and have broad potential applications in tissue engineering. In this article, the barium titanate (BT) particles were filled into the polycaprolactone (PCL)/calcium sulfate whisker (CSW) (15 wt%) composites to prepare the PCL/CSW/BT ternary composites. Due to the reinforcement synergy between the CSWs and the BT particles, the mechanical properties of the ternary composites were increased by 50% compared with the PCL/BT binary composites. The piezoelectric coefficient of the ternary composites is still in the range of natural bone. The ternary composite can promote the adhesion and proliferation of cells. The composites in this study have potential applications in tissue engineering.

Science ◽  
2019 ◽  
Vol 363 (6432) ◽  
pp. 1206-1210 ◽  
Author(s):  
Wei-Qiang Liao ◽  
Dewei Zhao ◽  
Yuan-Yuan Tang ◽  
Yi Zhang ◽  
Peng-Fei Li ◽  
...  

Piezoelectric materials produce electricity when strained, making them ideal for different types of sensing applications. The most effective piezoelectric materials are ceramic solid solutions in which the piezoelectric effect is optimized at what are termed morphotropic phase boundaries (MPBs). Ceramics are not ideal for a variety of applications owing to some of their mechanical properties. We synthesized piezoelectric materials from a molecular perovskite (TMFM)x(TMCM)1–xCdCl3 solid solution (TMFM, trimethylfluoromethyl ammonium; TMCM, trimethylchloromethyl ammonium, 0 ≤ x ≤ 1), in which the MPB exists between monoclinic and hexagonal phases. We found a composition for which the piezoelectric coefficient d33 is ~1540 picocoulombs per newton, comparable to high-performance piezoelectric ceramics. The material has potential applications for wearable piezoelectric devices.


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 452-461
Author(s):  
Yi Han ◽  
Xian Zhou ◽  
Li Lei ◽  
Huiqun Sun ◽  
Zhiyuan Niu ◽  
...  

In order to improve the utilization of nanoscale zero-valent iron (nZVI) in activating persulfate (PS), a composite material of nZVI/CSW with nZVI supported on calcium sulfate whiskers (CSWs) was synthesized in this study.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Reza Aramideh Khouy ◽  
Ali Nosrati ◽  
Mohammad Khodaei ◽  
Mehdi Banitalebi-Dehkordi ◽  
...  

AbstractSkin is the body’s first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4508
Author(s):  
Boyan Liu ◽  
Liuyang Han ◽  
Lyuming Pan ◽  
Hongzheng Li ◽  
Jingjing Zhao ◽  
...  

This research introduces an idea of producing both nanoscale and microscale pores in piezoelectric material, and combining the properties of the molecular β-phase dipoles in ferroelectric material and the space charge dipoles in order to increase the sensitivity of the sensor and modulate the response frequency bandwidth of the material. Based on this idea, a bi-nano-micro porous dual ferro-electret hybrid self-powered flexible heart sound detection sensor is proposed. Acid etching and electrospinning were the fabrication processes used to produce a piezoelectric film with nanoscale and microscale pores, and corona poling was used for air ionization to produce an electret effect. In this paper, the manufacturing process of the sensor is introduced, and the effect of the porous structure and corona poling on improving the performance of the sensor is discussed. The proposed flexible sensor has an equivalent piezoelectric coefficient d33 of 3312 pC/N, which is much larger than the piezoelectric coefficient of the common piezoelectric materials. Experiments were carried out to verify the function of the flexible sensor together with the SS17L heart sound sensor (BIOPAC, Goleta, CA, USA) as a reference. The test results demonstrated its practical application for wearable heart sound detection and the potential for heart disease detection. The proposed flexible sensor in this paper could realize batch production, and has the advantages of flexibility, low production cost and a short processing time compared with the existing heart sound detection sensors.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 664
Author(s):  
Haiyuan Zhao ◽  
Yafeng Han ◽  
Chen Pan ◽  
Ding Yang ◽  
Haotian Wang ◽  
...  

In order to obtain scaffold that can meet the therapeutic effect, researchers have carried out research on irregular porous structures. However, there are deficiencies in the design method of accurately controlling the apparent elastic modulus of the structure at present. Natural bone has a gradient porous structure. However, there are few studies on the mechanical property advantages of gradient bionic bone scaffold. In this paper, an improved method based on Voronoi-tessellation is proposed. The method can get controllable gradient scaffolds to fit the modulus of natural bone, and accurately control the apparent elastic modulus of porous structure, which is conducive to improving the stress shielding. To verify the designed structure can be fabricated by additive manufacturing, several designed models are obtained by SLM and EBM. Through finite element analysis (FEA), it is verified that the irregular porous structure based on Voronoi-tessellation is more stable than the traditional regular porous structure of the same structure volume, the same pore number and the same material. Furthermore, it is verified that the gradient irregular structure has a better stability than the non-gradient structure. An experiment is conducted successfully to verify the stability performance got by FEA. In addition, a dynamic impact FEA is also performed to simulate impact resistance. The result shows that the impact resistance of the regular porous structure, the irregular porous structure and the gradient irregular porous structure becomes better in turn. The mechanical property verification provides a theoretical basis for the structural design of gradient irregular porous bone tissue engineering scaffolds.


2018 ◽  
Vol 18 (11) ◽  
pp. 7896-7901 ◽  
Author(s):  
Lixiu Yang ◽  
Yuchen Lu ◽  
Fuan He ◽  
Huijun Wu ◽  
Tao Xu ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tae-Yeong Bak ◽  
Min-Suk Kook ◽  
Sang-Chul Jung ◽  
Byung-Hoon Kim

Porous polycaprolactone (PCL) scaffolds were fabricated by using the CO2gas foaming/salt leaching process and then PCL scaffolds surface was treated by oxygen or nitrogen gas plasma in order to enhance the cell adhesion, spreading, and proliferation. The PCL and NaCl were mixed in the ratios of 3 : 1. The supercritical CO2gas foaming process was carried out by solubilizing CO2within samples at 50°C and 8 MPa for 6 hr and depressurization rate was 0.4 MPa/s. The oxygen or nitrogen plasma treated porous PCL scaffolds were prepared at discharge power 100 W and 10 mTorr for 60 s. The mean pore size of porous PCL scaffolds showed 427.89 μm. The gas plasma treated porous PCL scaffolds surface showed hydrophilic property and the enhanced adhesion and proliferation of MC3T3-E1 cells comparing to untreated porous PCL scaffolds. The PCL scaffolds produced from the gas foaming/salt leaching and plasma surface treatment are suitable for potential applications in bone tissue engineering.


2013 ◽  
Vol 690-693 ◽  
pp. 1013-1019
Author(s):  
Xiao Juan Chen ◽  
Liu Chun Yang ◽  
Jun Feng Zhang ◽  
Yan Huang

Calcium sulfate whisker (CSW) was prepared through the method of cooling recrystallization. In an attempt to develop its new application in environmental protection, we investigated the effect of calcination on the material properties and arsenic uptake performance of calcium sulfate whisker anhydrate (CSAW), which was obtained from CSW calcined at 600 °C for 2 h. Moreover, XRD, SEM, optical microscope, and FT-IR were used to characterize CSW samples. It was found that calcination played an important role in the whisker structure through changing the content of crystal water and the morphology. The CSAW material exhibited a high removal rate of As3+/As5+under strongly alkaline condition.


Sign in / Sign up

Export Citation Format

Share Document