A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate

Science ◽  
2019 ◽  
Vol 363 (6432) ◽  
pp. 1206-1210 ◽  
Author(s):  
Wei-Qiang Liao ◽  
Dewei Zhao ◽  
Yuan-Yuan Tang ◽  
Yi Zhang ◽  
Peng-Fei Li ◽  
...  

Piezoelectric materials produce electricity when strained, making them ideal for different types of sensing applications. The most effective piezoelectric materials are ceramic solid solutions in which the piezoelectric effect is optimized at what are termed morphotropic phase boundaries (MPBs). Ceramics are not ideal for a variety of applications owing to some of their mechanical properties. We synthesized piezoelectric materials from a molecular perovskite (TMFM)x(TMCM)1–xCdCl3 solid solution (TMFM, trimethylfluoromethyl ammonium; TMCM, trimethylchloromethyl ammonium, 0 ≤ x ≤ 1), in which the MPB exists between monoclinic and hexagonal phases. We found a composition for which the piezoelectric coefficient d33 is ~1540 picocoulombs per newton, comparable to high-performance piezoelectric ceramics. The material has potential applications for wearable piezoelectric devices.

2015 ◽  
Vol 655 ◽  
pp. 263-266
Author(s):  
Fei Yi Liao ◽  
Shi Jun Li ◽  
Yuan Lin

Lead zirconate titanate (PZT) is one of the most widely used ferroelectric and piezoelectric materials. Its piezoelectricity is widely used in the applications of structural health monitoring (SHM). Here, we use PZT ceramics as sensors to detect the deformation of structure using guided Lamb waves. In order to well analyze the multi-modes of Lamb waves and achieve detection of deformation in superposed wave peaks, correlation and Fourier transform were used to extract peaks in both time and frequency domain. In this paper, a 7050 aluminum beam and three-point bending test machine were utilized to test the changes of waves when different deformations were introduced. With the adjustment of correlation index, change of time delay and new peaks occurring in time domain demonstrated the change of deformations. In frequency domain, the change of central frequencies and magnitudes also demonstrated the change of deformations. The study shows the potential applications of PZT sensors in detection of deformation.


2006 ◽  
Vol 955 ◽  
Author(s):  
Adam Kabulski ◽  
John Harman ◽  
Parviz Famouri ◽  
Dimitris Korakakis

ABSTRACTAluminum nitride (AlN) films are being investigated for piezoelectric and high temperature applications, but the piezoelectric response is still much lower than that of more common piezoelectric materials such as lead zirconate titanate or zinc oxide. A method of maximizing the piezoelectric response of aluminum nitride has been explored by depositing stack structures composed of aluminum nitride and platinum. These stack structures were created by depositing a thin, ∼50nm, metal layer in between thicker, ∼150-350nm, layers of the piezoelectric film. Platinum was chosen as the metal interlayer due to the tendency of AlN to become highly c-oriented when deposited on Pt. An electric field was applied across the structure and displacements were measured using a Laser Doppler Vibrometer. A maximum piezoelectric coefficient d33 was found to be over two times larger than the theoretical value for AlN (3.9pm/V). However, some of the stack structures were found to be conductive when measuring the displacement. I-V measurements as well as Fowler-Nordheim theory and plots were applied to investigate tunneling due to high electric fields in the structures.


2014 ◽  
Vol 609-610 ◽  
pp. 1331-1335
Author(s):  
Jun Jie Chen ◽  
Ying Liu ◽  
Jian Qiang Ma ◽  
Ji Cong Deng ◽  
Bao Qing Li ◽  
...  

This paper demonstrates that the deformation of the piezoelectric deformable mirror (DM) is proportional to the transverse piezoelectric coefficient of the lead zirconate titanate (PZT) by the theoretical analysis. The optimal polarization conditions were obtained by experiments to optimize the performance of the DM. After the optimal polarization, the transverse piezoelectric coefficient of the PZT film increases from 350 pm/V to 431 pm/V, which will improve the deformation of the DM.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Iñigo Bretos ◽  
Ricardo Jiménez ◽  
Monika Tomczyk ◽  
Enrique Rodríguez-Castellón ◽  
Paula M. Vilarinho ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 1321-1328
Author(s):  
Abdul Aziz Khan J , Shanmugaraja P , Kannan S

MEMS Energy Harvesting(EH) devices are excepted to grow in the upcoming years, due to the increasing aspects of MEMS EH devices in vast applications. In Recent advancements in energy harvesting (EH) technologies wireless sensor devices play a vital role to extend their lifetime readily available in natural resources. In this paper the design of MEMS Cantilever at low frequency (100Hz) with different piezoelectric materials Gallium Arsenide (GaAs), Lead Zirconate Titanate (PZT-8), Tellurium Dioxide (TeO2), Zinc oxide (ZnO) is simulated and performance with different materials are compared. The results are analyzed with various parameters such as electric potential voltage, von mises stress, displacement. The paper discusses the suitability of the piezoelectric material for MEMS fully cochlear implantable sensor application.


1994 ◽  
Vol 360 ◽  
Author(s):  
D.A. Barrow ◽  
T.E. Petroff ◽  
M. Sayer

AbstractLead zirconate titanate (PZT) films of up to 60 μm in thickness have been fabricated on a wide variety of substrates using a new sol gel process. The dielectric properties (∈ = 900), ferroelectric (Ec = 16 kV/cm and Pr = 35 μC/cm 2) and piezoelectric properties are comparable to bulk values. The characteristic Curie point of these films is at 420 °C. Piezoelectric actuators have been developed by depositing thick PZT films on both planar and coaxial substrates. Stainless steel cantilevers and optical fibres coated with a PZT film exhibit flexure mode resonant vibrations observable with the naked eye. A low frequency in-line fibre optic modulator has been developed using a PZT coated optical fibre. The high frequency resonance of a 60 μm film on a aluminum substrate has been observed.


Author(s):  
Ryan Rudy ◽  
Adam J. Cohen ◽  
Jeffrey S. Pulskamp ◽  
Ronald G. Polcawich ◽  
Kenn R. Oldham

Terrestrial and other millimeter-scale autonomous micro-robots face significant challenges in surveying their environment, due to small power budgets and payload capacities. One low-power, low-mass form of obstacle detection is tactile sensing of contact with other surfaces. In this-paper, a tactile sensor inspired by insect antennae is described, based on thin-film lead-zirconate-titanate (PZT) transduction. Thin-film piezoelectric materials permit actuation and sensing mechanisms to be coupled in very small, compact structures, as well as complement previously developed microrobotic leg mechanisms. Key design parameters for the tactile sensor are introduced and analyzed in terms of sweep frequency and range of motion, and signals from sensor impact are predicted. Experimental results with partially-released prototype actuators show respectable agreement with modeled behavior for dynamic motion, though impact detection is hampered by large feedthrough disturbances. Completed sensors range from 2 to 4 mm in length and are approximately 500 μm in width, with a sweep range of nearly 1 mm demonstrated from a 2 mm long prototype.


2016 ◽  
Vol 869 ◽  
pp. 13-18
Author(s):  
Margarete Soares da Silva ◽  
Lucas L. Silva ◽  
Eliane F. Souza ◽  
Elson Longo ◽  
Maria A. Zaghete ◽  
...  

Some piezoelectric properties of lead zirconate titanate PbZr0.53Ti0.47O3 ceramic samples sintered at 1100oC for 3 hours has been investigated in this work and compared to the strontium modification at 0.2, 0.4, and 0.6 mol%. Polarization versus Electric Field curve and d33 and Kp piezoelectric parameters was taken at room temperature in order to investigate the correlation with phase amount and lattice parameters of crystalline phases calculated through Rietveld refinement. The results indicated the lead substitution with 0.4 mol% of strontium enhances the d33 and Kp piezoelectric parameters, but there is no systematic variation of the piezoelectric properties with strontium content. By the other hand, tetragonal phase seems plays an important rule on piezoelectric devices operating near the room temperature and some correlations could be found.


Sign in / Sign up

Export Citation Format

Share Document