POLYNOMIAL VERSUS SIMILARITY TRANSFORMATIONS BETWEEN GPS AND TURKISH REFERENCE SYSTEMS

Survey Review ◽  
2005 ◽  
Vol 38 (295) ◽  
pp. 58-69 ◽  
Author(s):  
M. Soycan
2019 ◽  
Author(s):  
Vitaly Kuyukov

Modern general theory of relativity considers gravity as the curvature of space-time. The theory is based on the principle of equivalence. All bodies fall with the same acceleration in the gravitational field, which is equivalent to locally accelerated reference systems. In this article, we will affirm the concept of gravity as the curvature of the relative wave function of the Universe. That is, a change in the phase of the universal wave function of the Universe near a massive body leads to a change in all other wave functions of bodies. The main task is to find the form of the relative wave function of the Universe, as well as a new equation of gravity for connecting the curvature of the wave function and the density of matter.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
M. Ferdows ◽  
MD. Shamshuddin ◽  
S. O. Salawu ◽  
K. Zaimi

AbstractIn the study, the steady, laminar, incompressible, convective flow of a viscous fluid over a moving plate is investigated theoretically by adopting different types of nanoparticles. Radiation, internal heat generation and viscous dissipation effects are considered in the energy modeled equation. The governing flow equations for the momentum and temperature are reduced to dimensionless form via similarity transformations. The solutions to the resultant equations alongside with the transformed boundary conditions are numerically obtained using MATLAB package bvp4c. Validation with earlier studies are done for the non-internal heat generation case for two distinct nanoparticles of type Cu-water and Al-water. Extensive visualization of flow rate and heat distributions for various emerging parameters are examined. Temperature is consistently enhanced with a rising Eckert number of both types of nanofluids, whereas it is strongly reduced with rising values of radiation term. Heat transfer coefficient is consistently increased with a nanoparticle volume fraction of high convective heat in the medium.


Author(s):  
A. Shahid ◽  
M. Ali Abbas ◽  
H.L. Huang ◽  
S.R. Mishra ◽  
M.M. Bhatti

The present study analyses the dissipative influence into an unsteady electrically conducting fluid flow embedded in a pervious medium over a shrinkable sheet. The behavior of thermal radiation and chemical reactions are also contemplated. The governing partial differential equations are reformed to ordinary differential equations by operating similarity transformations. The numerical outcomes for the arising non-linear boundary value problem are determined by implementing the Successive linearization method (SLM) via Matlab software. The velocity, temperature, and concentration magnitudes for distant values of the governing parametric quantities are conferred, and their conduct is debated via graphical curves. The surface drag coefficient increases, whereas the local Nusselt number and Sherwood number decreases for enhancing unsteadiness parameter across suction parameter. Moreover, the magnetic and suction parameters accelerate velocity magnitudes while by raising porosity parameter, velocity decelerates. Larger numeric of thermal radiation parameter and Eckert number accelerates the temperature profile while by enhancing Prandtl number it decelerates. Schmidt number and chemical reaction parameters slowdowns the concentration distribution, and the chemical reaction parameter influences on the point of chemical reaction that benefits the interface mass transfer. It is expected that the current achieved results will furnish fruitful knowledge in industrious utilities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiu-Hong Shi ◽  
Aamir Hamid ◽  
M. Ijaz Khan ◽  
R. Naveen Kumar ◽  
R. J. Punith Gowda ◽  
...  

AbstractIn this study, a mathematical model is developed to scrutinize the transient magnetic flow of Cross nanoliquid past a stretching sheet with thermal radiation effects. Binary chemical reactions and heat source/sink effects along with convective boundary condition are also taken into the consideration. Appropriate similarity transformations are utilized to transform partial differential equations (PDE’s) into ordinary ones and then numerically tackled by shooting method. The impacts of different emerging parameters on the thermal, concentration, velocity, and micro-rotation profiles are incorporated and discussed in detail by means of graphs. Results reveal that, the escalation in magnetic parameter and Rayleigh number slowdowns the velocity and momentum of the fluid. The increase in Biot number, radiation and heat sink/source parameters upsurges the thermal boundary but, converse trend is seen for escalating Prandtl number. The density number of motile microorganisms acts as a growing function of bioconvection Lewis number and declining function of bioconvection Peclet number.


Author(s):  
Dip Mukherjee ◽  
Bikash Sahoo

The Bödewadt boundary-layer flow is induced by the rotation of a viscous fluid rotating with a constant angular velocity over a stationary disk. In this paper, the Bödewadt boundary-layer flow has been studied in the presence of the Coriolis force to observe the effect of radial stretch of the lower disk on the flow. For the first time in the literature, a numerical investigation of the effects of both stretching mechanism and the Coriolis force on the flow behaviour and on the convective instability characteristics of the above flow has been carried out. In this paper, the Kármán similarity transformations have been considered in order to convert the system of PDEs representing the momentum equations of the flow into a system of highly non-linear coupled ODEs and solved numerically to obtain the velocity profiles of the Bödewadt flow. Then, a convective instability analysis has been performed by using the Chebyshev collocation method in order to obtain the neutral curves. From the neutral curves it is observed that radial stretch has a globally stabilising effect on both the inviscid Type-I and the viscous Type-II instability modes. This underlying physical phenomena has been verified by performing an energy analysis of the flow. The results obtained excellently supports the previous works and will be prominently treated as a benchmark for our future studies.


Author(s):  
Venkatesh Puneeth ◽  
Sarpabhushana Manjunatha ◽  
Bijjanal Jayanna Gireesha ◽  
Rama Subba Reddy Gorla

The induced magnetic field for three-dimensional bio-convective flow of Casson nanofluid containing gyrotactic microorganisms along a vertical stretching sheet is investigated. The movement of these microorganisms cause bioconvection and they act as bio-active mixers that help in stabilising the nanoparticles in the suspension. The two forces, Thermophoresis and Brownian motion are incorporated in the Mathematical model along with Stefan blowing. The resulting model is transformed to ordinary differential equations using similarity transformations and are solved using [Formula: see text] method. The Velocity, Induced Magnetic field, Temperature, Concentration of Nanoparticles, and Motile density profiles are interpreted graphically. It is observed that the Casson parameter decreases the flow velocity and enhances the temperature, concentration, and motile density profiles and also it is noticed that the blowing enhances the nanofluid profiles whereas, suction diminishes the nanofluid profiles. On the other hand, it is perceived that the rate of heat conduction is enhanced with Thermophoresis and Brownian motion.


Sign in / Sign up

Export Citation Format

Share Document