Tungsten-bearing rutile from the Kori Kollo gold mine, Bolivia

1998 ◽  
Vol 62 (3) ◽  
pp. 421-429 ◽  
Author(s):  
C. M. Rice ◽  
K. E. Darke ◽  
J. W. Still ◽  
E. E. Lachowski

AbstractW-bearing rutile formed during alteration of jarosite by resurgent hydrothermal fluids in the oxide zone of the Kori Kollo gold deposit. The rutile shows sector zoning in basal sections and well developed multiple growth zones, both defined in backscatter electron images by variations in the W content. The maximum WO3 content is 5.3 wt.% and W substitutes for Ti with double substitution of Fe to maintain charge balance. The causes of multiple growth bands are considered to be changes in externally controlled variables occurring in a shallow hydrothermal system. Whereas Ti is probably leached from biotite in dacitic rocks, the W is introduced by hydrothermal fluids.

1989 ◽  
Vol 26 (4) ◽  
pp. 694-715 ◽  
Author(s):  
John F. Slack ◽  
Paul R. Coad

Tourmaline and chlorite are the principal ferromagnesian silicate minerals in the Kidd Creek massive sulphide deposit. Tourmaline is most common in sphalerite-rich peripheral margins of the chalcopyrite stringer zone. Within the north orebody, samples typically contain <1% tourmaline, but small areas (hand-specimen scale) may have 10–20%. Chlorite is more widely distributed and in places constitutes 30–50% of rock volumes. Associated assemblages may include quartz, sulphides (principally chalcopyrite, sphalerite, and (or) pyrite), carbonate, albite, sericite, and rare fluorite, allanite, or zoisite(?).The tourmalines and chlorites record a series of multiple hydrothermal and metamorphic events. Paragenetic studies suggest that tourmaline was deposited during several discrete stages of mineralization, as evidenced by brecciation and cross-cutting relationships. Most of the tourmalines have two concentric growth zones defined by different colours (green, brown, blue, yellow). Some tourmalines also display pale discordant rims that cross-cut and embay the inner growth zones and polycrystalline, multiple-extinction domains. Late sulphide veinlets (chalcopyrite, pyrrhotite) transect the inner growth zones and pale discordant rims of many crystals. The concentric growth zones are interpreted as primary features developed by the main ore-forming hydrothermal system, whereas the discordant rims, polycrystalline domains, and cross-cutting sulphide veinlets reflect post-ore metamorphic processes.Detailed electron microprobe analyses of tourmalines show a wide compositional range, from Fe-rich dravite nearly to end-member schorl, with Fe/(Fe + Mg) ratios varying from 0.33 to 0.92; only minor amounts of Ca are present, yielding uniformly high Na/(Na + Ca) ratios of 0.84–0.99. Two sets of chemical zoning trends are identified in the tourmalines, involving systematic changes in Fe/(Fe + Mg), Na/(Na + Ca), Al, and Ti that are believed to reflect internal coupled substitutions (e.g.,  + Ti = Na + Al) and local mineral equilibria (e.g., tourmaline–chlorite). Analyses of the pale discordant reaction rims show consistent depletion of Fe, Ca, and Ti, presumably by fluid–solid reactions during post-ore metamorphism.Chlorites also show an extensive range in composition, from ripidolite nearly to end-member daphnite, with Fe/(Fe + Mg) ratios of 0.43–0.98 and Si cation values of 5.00–5.39. Chlorites from the fringes of the footwall stringer zone have narrow compositional ranges, whereas chlorites near footwall rhyolite sills in the core of the stringer zone display major variations in Fe/(Fe + Mg) ratios, including one sample with a range of 0.68–0.95. The former group of chlorites has Fe/(Fe + Mg) ratios that correlate well with those of coexisting tourmalines (exclusive of late reaction rims). Data for the latter group, in contrast, fall off equilibrium KD curves, indicating that the tourmalines and chlorites within these samples are not in chemical equilibrium. The chlorites are believed to have been altered (overprinted) by Fe-rich hydrothermal fluids apparently generated during intrusion of the rhyolite sills. The tourmalines, however, are unaffected and retain primary chemical signatures.Variations in mineral proportions and mineral chemistry within the deposit mainly depend on fluctuations in temperature, pH, water/rock ratios, and amounts of entrained seawater. The major proposed control is mixing between high-temperature, Fe-rich end-member hydrothermal fluids and cold, Mg-rich entrained seawater. Fe/(Fe + Mg) variations in footwall tourmalines (and equilibrium chlorites) are believed to largely reflect the progressive infiltration of Mg-rich seawater into the margins and top of the hydrothermal system. The more Fe-rich compositions of Kidd Creek tourmalines relative to those from sediment-hosted massive sulphide deposits (e.g., Sullivan, British Columbia) may be related to the preferential generation of end-member hydrothermal fluids in proximal volcanic environments like that at Kidd Creek.


2020 ◽  
Author(s):  
Ryan D. Taylor ◽  
Thomas Monecke ◽  
T. James Reynolds ◽  
Jochen Monecke

Abstract The Grass Valley orogenic gold district in the Sierra Nevada foothills province, central California, is the largest historical gold producer of the North American Cordillera. Gold mineralization is associated with shallowly dipping north-south veins hosted by the 160 Ma Grass Valley granodiorite to the southwest of the Grass Valley fault and steeply dipping east-west veins in accreted oceanic rocks to the northeast of this major fault. Quartz veins from both vein types show well-preserved primary textural relationships. Using a combination of petrographic and microanalytical techniques, the paragenetic sequence of minerals within the veins and the compositions of ore minerals were determined to constrain the mechanisms of quartz vein formation and gold deposition. The veins are composed of early quartz that formed through cooling of hydrothermal fluids derived from a geopressured reservoir at depth. The early quartz shows growth zoning in optical cathodoluminescence and contains abundant growth bands of primary inclusions. The primary inclusion assemblages and myriads of crosscutting secondary fluid inclusions have been affected by postentrapment modification, suggesting that early quartz formation was postdated by pronounced pressure fluctuations. These pressure fluctuations, presumably involving changes from lithostatic to hydrostatic conditions, may be related to fault failure of the host structure as predicted by the fault-valve model. Fluid flow associated with pressure cycling took place along microfractures and grain boundaries resulting in extensive recrystallization of the early quartz. Deposition of pyrite, arsenopyrite, and first-generation gold from these hydrothermal fluids causing recrystallization of the early quartz occurred as a result of wall-rock sulfidation. The gold forms invisible gold in the compositionally zoned pyrite or micron-sized inclusions within pyrite growth zones. The latest growth zones in euhedral quartz crystals that formed in association with this stage of the paragenesis contain very rare primary fluid inclusions that have not been affected by postentrapment modification. The hydrothermal system transitioned entirely to hydrostatic conditions immediately after formation of the latest quartz, explaining the preservation of the primary fluid inclusions. The formation of minor quartz in open spaces was followed by the deposition of second-generation native gold and telluride minerals that are commonly associated with base metal sulfides. Ore formation at this stage of the paragenesis is attributed to the rapid decompression of hydrothermal fluids escaping from the geopressured part of the crust into the overlying hydrostatic realm. There is no fluid inclusion evidence that this pressure drop resulted in fluid immiscibility of the hydrothermal fluids. Fluid inclusion evidence suggests that the north-south veins formed at a paleodepth of ~8 km, whereas the east-west veins appear to have formed at ~10 to 11 km below surface, confirming previous inferences that the NE-dipping Grass Valley reverse fault accommodated a large displacement. The findings of the study at Grass Valley have significant implications for the model for orogenic gold deposits, as the reconstruction of the paragenetic relationships provides evidence for the occurrence of two discrete events of gold introduction that occurred at different conditions during the evolution of the hydrothermal system.


Author(s):  
Hsin-Fu Yeh ◽  
Hung-Hsiang Hsu

The Tatun Volcano Group (TVG) is located in northern Taiwan and consists of many springs and fumaroles. The Tayukeng (TYK) area is the most active fumarole site in the TVG. In this study, we analyzed the long-term geochemical variations of hydrothermal fluids and proposed a mechanism responsible for the variation in TYK. There are two different aquifers beneath the TYK area: a shallow SO42−-rich aquifer and a deeper aquifer rich in Cl−. TYK thermal water was mainly supplied by the shallow SO42−-rich aquifer; therefore, the thermal water showed high SO42− concentrations. After 2015, the inflow of deep thermal water increased, causing the Cl− concentrations of the TYK to increase. Notably, the inferred reservoir temperatures based on quartz geothermometry increased; however, the surface temperature of the spring decreased. We inferred that the enthalpy was lost during transportation to the surface. Therefore, the surface temperature of the spring does not increase with an increased inflow of deep hydrothermal fluid. The results can serve as a reference for understanding the complex evolution of the magma-hydrothermal system in the TVG.


Author(s):  
Andrés Castrillón ◽  
Javier Guerrero

The products of metasomatic alteration (e.g., carbonation) of peridotites are called listvenites. Based on a description of the outcrops in the laterite deposit at Cerro Matoso located in the NW of Colombia, the mineralogical composition confirmed by petrography, and a chemical analysis performed with XRF and WDS/EDS, the previous unit called tachylite is redefined as listvenite. Two types of listvenites are described: listvenite A, with the mineralogical association of quartz + siderite + phyllosilicates + goethite +/- magnetite, and listvenite B, with the association of siderite + phyllosilicates + goethite. Cr-spinel relics accompanied by Mn-siderite and neoblastic textures, indicate their origin from peridotites, where Mn-Fe would have been deposited by hydrothermal fluids. Hydrothermal reducing environments with alkaline fluids and low temperatures should have favored the formation of listvenites that are observed along a fracture zone, oriented WNW-ESE at Pit-1 in Cerro Matoso. Due to exposure to climatic conditions since the Eocene, but definitively since the last Andean Orogeny, listvenites were affected, like all the rocks in the Cerro Matoso deposit, by intense supergene weathering and leaching processes, which could make their true origin unclear.


2008 ◽  
Vol 65 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Javier Tovar-Ávila ◽  
Christopher Izzo ◽  
Terence I Walker ◽  
J Matias Braccini ◽  
Robert W Day

A prospective model of dorsal-fin spine growth in chondrichthyans is devised by studying the growth of spines from captive and wild Heterodontus portusjacksoni injected with several fluorochromes. Evidence was found for only two dentine layers in the spine trunk of H. portusjacksoni, contrasting with conjectures about the presence of a third middle dentine layer in some squalids. The spines have three simultaneous growth zones. The first growth zone is along the internal edge of the inner trunk dentine layer, where growth bands are deposited towards the centre (centripetally), increasing spine length and width by pressure against the cartilage rod. The second growth zone is along the external edge of the outer trunk dentine layer at the spine base, where growth bands are deposited in an opposite direction to the centre (centrifugally), increasing spine width. A third growth zone at the base of the cap enables downward expansion over the trunk. The model of concentric cones describes correctly the inner dentine layer growth pattern, whereas the outer dentine layer growth increments appear to be related to the external bands on the surface of the trunk. Growth increments from the three growth zones of the spine are all potentially useful for age estimation.


Author(s):  
Timothy Moloney ◽  
Kenneth Sims ◽  
John Kaszuba

Hydrothermal fluids in Yellowstone National Park have widely varying chemical composition. Heat and volatile flux from the hydrothermal system can be estimated by monitoring the composition and volume of emitted hydrothermal fluid, but the source of solutes in hydrothermal fluid is often nebulous and the geochemical processes that affect the nuclides are poorly understood. Measurements of 220Rn and 222Rn activity in hydrothermal fluids and of CO2 flux from fumaroles and hot springs were carried out in Yellowstone National Park during the summer of 2010. We observed a weak relationship between (220Rn/222Rn) and CO2 flux, which indicates that CO2 acts as a carrier gas to bring radon to the surface, but the radon is sourced from aquifer rocks rather than magma. If radon reaching the surface were sourced from magma below Yellowstone, there would be a stronger correlation between (220Rn/222Rn) and CO2 flux. Measurements of 223Ra, 224Ra, 226Ra, 228Ra, and major solute chemistry in hot spring waters support the hypothesis that the time scale of solute transport from the deep hydrothermal reservoir is long compared to the half lives of 220Rn and 222Rn, which are useful for processes operating on the time scale of 5 minutes to 20 days. Radium isotope activities in hot springs indicate that the solute transport time varies significantly from region to region, indicating that circulation in some areas operates on the time scale of 224Ra/223Ra (20-55 days) and circulation in other areas operates on the time scale of 228Ra/226Ra (25-1600 years). The radium isotope composition of hot spring water is also influenced by differences in regional aquifer rocks and geochemical processes such as sorption and mineral precipitation. In summary, geochemical and hydrothermal processes in Yellowstone operate on many different time scales and in diverse geologic conditions, but radionuclide activities possess excellent potential to study these complex phenomena.


2020 ◽  
Author(s):  
Diana Comte ◽  
Claudia Pavez ◽  
Francisco Gutierrez ◽  
Diego Gaytan

&lt;p&gt;Tacora Volcano (17&amp;#186;43&amp;#8217;S &amp;#8211; 69&amp;#186;46&amp;#8217;W) is a composite stratovolcano that lies at the southernmost end of a 10 km-long volcanic lineament that extends between Chile and Per&amp;#250;. Around Tacora volcano, current thermal manifestations are two active fumarolic fields located at the western flank of the stratovolcano and at the volcano summit, indicating active magma degassing in a shallow hydrothermal system. Beneath Tacora volcano is located the NW Challaviento reverse fault that belongs to the Incapuquio - Challaviento fault system of Middle Eocene age. To complement previous exploration results and conceptual modeling developed by INFINERGEO SPA, seventeen short period seismic stations were installed around Tacora volcano, between August and December 2014. Using the P and S wave arrival times of locally recorded seismicity, a 3D velocity model was determined through a travel time tomography. According with the results, we interpreted high Vp /Vs values as water-saturated areas, corresponding to the recharge zone of Tacora hydrothermal system. In addition, low values of &amp;#916;Vp/Vp (%) and Vp/Vs ratio represent the location of a gas-saturated magmatic reservoir between sea level and 2 km depth and circulation networks of magmatic-hydrothermal fluids. Low Vp/Vs volumes (magma reservoir / high temperature hydrothermal fluids), the presence of fumarolic fields and surface hydrothermal alteration have a spatial correlation. The above suggests a structural control of the Challaviento fault in the hydrothermal flow as well as a primary influence in the emplacement and location of the magmatic-hydrothermal reservoir. Finally, we present a cluster analysis using the &amp;#916;Vp/Vp (%) parameter. Through this analysis, we found a method for the identification of a key structure in depth composed by the magma reservoir (low Vp/Vs ratios, low &amp;#916;Vp/Vp (%)), clay level areas (intermediate values of &amp;#916;Vp/Vp (%)), and degasification zones (low values of &amp;#916;Vp/Vp (%)) directly related with the surface thermal manifestations.&lt;/p&gt;


1973 ◽  
Vol 39 (303) ◽  
pp. 321-325 ◽  
Author(s):  
A. K. Ferguson

SummaryThe observations of hour-glass sector zoning from four selected clinopyroxenes in undersaturated lavas best fit a model in which the sector zoning is formed due to a structural requirement in a growth direction normal to {100} where a high concentration of silicate units, required to build the silicate chains, is unsatisfied. In these sectors Al substitutes for Si, the charge balance being maintained by octahedral substitutions, of which Ti contributes to the deeper colour of the sectors. The presence of concentric zoning only reflects a change in temperature and a change in the composition of the liquid during crystallization of the pyroxene.


1998 ◽  
Vol 4 (5) ◽  
pp. 475-480 ◽  
Author(s):  
David C. Joy ◽  
Carolyn S. Joy

Specimens that charge under electron beam irradiation in the scanning electron microscope (SEM) can be stabilized by choosing the beam energy to be such a value that the sum of the secondary and backscatter electron yields is unity, as this establishes a dynamic charge balance. We show here that for pure elements, the energies El and E2, for which charge balance occurs, are related directly to the atomic number of the material. Although generally there is no comparable relation for compounds, we also show that for polymers, the E2 energy is related both to the ratio of the number of valence electrons to molecular weight and to the electro-negativity of the monomer units that form the polymer.


Sign in / Sign up

Export Citation Format

Share Document