Clay minerals as indicators of wind and current contribution to post-glacial sedimentation on the Azores/Iceland Ridge

Clay Minerals ◽  
1983 ◽  
Vol 18 (1) ◽  
pp. 65-75 ◽  
Author(s):  
F. Grousset ◽  
C. Latouche ◽  
N. Maillet

AbstractClay mineral and trace element data indicate that sediments in the vicinity of the North Mid-Atlantic Ridge derive from material of both Icelandic and Canadian origin. These sources agree with the marine and atmospheric circulation patterns observed in this area.

Clay Minerals ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 25-55 ◽  
Author(s):  
C. V. Jeans ◽  
D. S. Wray ◽  
R. J. Merriman ◽  
M. J. Fisher

AbstractThe nature and origin of authigenic clay minerals and silicate cements in the Jurassic and Cretaceous sediments of England and the North Sea are discussed in relation to penecontemporaneous volcanism in and around the North Sea Basin. Evidence, including new REE data, suggests that the authigenic clay minerals represent the argillization of volcanic ash under varying diagenetic conditions, and that volcanic ash is a likely source for at least the early silicate cements in many sandstones. The nature and origin of smectite-rich, glauconite-rich, berthierine-rich and kaolin-rich volcanogenic clay mineral deposits are discussed. Two patterns of volcanogenic clay minerals facies are described. Pattern A is related to ash argillization in the non-marine and marine environments. Pattern B is developed by the argillization of ash concentrated in the sand and silt facies belts in the seas bordering ash-covered islands and massifs. It is associated with regression/ transgression cycles which may be related to thermal doming and associated volcanism, including the submarine release of hydrothermal fluids rich in Fe. The apparent paucity of volcanogenic clay deposits in the Jurasssic and Early Cretaceous sediments of the North Sea is discussed.


F, Cl and Br contents of tholeiitic volcanic glasses dredged along the Mid-Atlantic Ridge from 53° to 28° N, including the transect over the Azores Plateau, are reported. The halogen variations parallel those of 87 Sr/ 86 Sr, La/Sm or other incompatible elements of varying volatility. The latitudinal halogen variation pattern is not obliterated if only Mg-rich lavas are considered. Variations in extent of low-pressure fractional crystallization or partial melting conditions do not appear to be the primary cause of the halogen variations. Instead, mantle-derived heterogeneities in halogens, with major enrichments in the mantle beneath the Azores, are suggested. The Azores platform is not only a ‘hotspot’ but also a ‘wetspot’, which may explain the unusually intense Azores volcanic activity. The magnitude of the halogen and incompatible element enrichments beneath the Azores appear strongly dependent on the size of these anions and cations, but independent of relative volatility at low pressure. The large anions Cl and Br behave similarly to large cations Rb, Cs and Ba, and the smaller anion F similarly to Sr and P. Processes involving crystal and liquid (fluid and/or melt), CO 2 rather than H 2 O dominated, seem to have produced these largescale mantle heterogeneities. Geochemical ‘anomalies’ beneath the Azores are no longer apparent for coherent element pair ratios of similar ionic size. Values of such ‘unfractionated’ coherent trace element ratios provide an indication of the mantle composition and its nature before fractionation event (s) which produced the inferred isotopic and trace element heterogeneities apparently present beneath the North Atlantic. The relative trace element composition of this precursor mantle does not resemble that of carbonaceous chondrites except for refractory trace element pairs of similar ionic size. It is strongly depleted in halogens, and to a lesser extent in large alkali ions Rb and Cs relative to refractory Ba. These relative depletions are comparable within a factor of 5 to Ganapathy & Anders’s estimates for the bulk Earth, with the exception of Cs. There is also evidence for removal of phosphorus into the iron core during its formation. With the exception of San Miguel, alkali basalts from the Azores Islands appear to have been derived from the same mantle source as tholeiitic basalts from the ridge transect over the Azores Platform but by half as much degree of partial melting. The Azores subaerial basalts seem to have been partly degassed in Cl, Br and F, in decreasing order of intensity. A working model involving metasomatism from release of fluids at phase transformation during convective mantle overturns is proposed to explain the formation of mantle plumes or diapirs enriched in larger relative to smaller halogen and other incompatible trace elements. The model is ad hoc and needs testing. However, any other dynamical model accounting for the 400 -1000 km long gradients in incompatible trace elements, halogens and radiogenic isotopes along the Mid-Atlantic Ridge should, at some stage, require either (1) some variable extent of mixing or (2) differential migration of liquid relative to crystals followed by re-equilibration (or both), as a diffusion controlled mechanism over such large distances is clearly ruled out, given the age of the Earth.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Pascal Yiou ◽  
Julien Cattiaux ◽  
Aurélien Ribes ◽  
Robert Vautard ◽  
Mathieu Vrac

A few types of extreme climate events in the North Atlantic region, such as heatwaves, cold spells, or high cumulated precipitation, are connected to the recurrence of atmospheric circulation patterns. Understanding those extreme events requires assessing long-term trends of the atmospheric circulation. This paper presents a set of diagnostics of the intra- and interannual recurrence of atmospheric patterns. Those diagnostics are devised to detect trends in the stability of the circulation and the return period of atmospheric patterns. We detect significant emerging trends in the winter circulation, pointing towards a potential increased predictability. No such signal seems to emerge in the summer. We find that the winter trends in the dominating atmospheric patterns and their recurrences do not depend of the patterns themselves.


2006 ◽  
Vol 30 (2) ◽  
pp. 143-174 ◽  
Author(s):  
D. G. Kingston ◽  
D. M. Lawler ◽  
G. R. McGregor

This paper evaluates the relationships between atmospheric circulation, climate and streamflow in the northern North Atlantic region over the last century and especially the last 50 years. Improved understanding of climatic influences on streamflow is vital given the great importance of fluvial processes to natural systems and water resources, especially in the light of recent and predicted climate change. The main focus lies with climatic and hydrologic implications of the major circulation patterns in the northern North Atlantic, namely the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO). The studies reviewed here reveal key relationships between circulation, climate and streamflow across the northern North Atlantic, allowing the construction of a simple conceptual model for this system. Generally positive NAO/AO-streamflow relationships are found in northwest Europe and northeast USA, with both positive and negative NAO/AO-streamflow linkages apparent for parts of eastern Canada. To help promote a better understanding of the system, several research gaps are identified and critically examined, including: the spatial scope and coverage of investigations; data quality and homogeneity; appropriateness of analytical techniques; and the need for greater knowledge and technique sharing between hydrology and climatology, particularly regarding the rigorous characterization of atmospheric circulation patterns. Among these, the development of seasonally varying, or mobile, NAO indices, to capture variations in subseasonal, seasonal and annual movements in the centres of action, and the need to develop analyses of more hydrologically meaningful climate variables beyond conventional time averaged statistics, are deemed particularly important.


2021 ◽  
Vol 34 (3) ◽  
pp. 1005-1021
Author(s):  
Gareth J. Marshall

AbstractThe Arctic continues to warm at a much faster rate than the global average. One process contributing to “Arctic amplification” involves changes in low-frequency macroscale atmospheric circulation patterns and their consequent influence on regional climate. Here, using ERA5 data, we examine decadal changes in the impact of seven such patterns on winter near-surface temperature (SAT) and precipitation (PPN) in northern Russia and calculate the temporal consistency of any statistically significant relationships. We demonstrate that the 40-yr climatology hides considerable decadal variability in the spatial extent of such circulation pattern–climate relationships across the region, with few areas where their temporal consistency exceeds 60%. This is primarily a response to the pronounced decadal expansion/contraction and/or mobility of the circulation patterns’ centers of action. The North Atlantic Oscillation (NAO) is the dominant pattern (having the highest temporal consistency) affecting SAT west of the Urals. Farther east, the Scandinavian (SCA), Polar/Eurasian (POL), and West Pacific patterns are successively the dominant pattern influencing SAT across the West Siberian Plains, Central Siberian Plateau, and mountains of Far East Siberia, respectively. From west to east, the SCA, POL, and Pacific–North American patterns exert the most consistent decadal influence on PPN. The only temporally invariant significant decadal relationships occur between the NAO and SAT and the SCA and PPN in small areas of the North European Plain.


2021 ◽  
Author(s):  
Leonardo Rydin Gorjão ◽  
Keno Riechers ◽  
Forough Hassanibesheli ◽  
Dirk Witthaut ◽  
Pedro G. Lind ◽  
...  

Abstract. Dansgaard–Oeschger (DO) events are sudden climatic shifts from cold to substantially milder conditions in the arctic region that occurred during previous glacial intervals. They can be most clearly identified in paleoclimate records of δ18O and dust concentrations from Greenland ice cores, which serve as proxies for temperature and atmospheric circulation patterns, respectively. The existence of stadial (cold) and interstadial (milder) phases is typically attributed to a bistability of the North Atlantic climate system allowing for rapid transitions from the first to the latter and a more gentle yet still fairly abrupt reverse shift from the latter to the first. However, the underlying physical mechanisms causing these transitions remain debated. Here, we conduct a data-driven analysis of the Greenland temperature and atmospheric circulation proxies under the purview of stochastic processes. Based on the Kramers–Moyal equation we present a one-dimensional and two-dimensional derivation of the proxies' drift and diffusion terms, which unravels the features of the climate system's stability landscape. Our results show that: (1) in contrast to common assumptions, the δ18O proxy results from a monostable process, and transitions occur in the record only due to the coupling to other variables; (2) conditioned on δ18O the dust concentrations exhibit both mono and bistable states, transitioning between them via a double-fold bifurcation; (3) the δ18O record is discontinuous in nature, and mathematically requires an interpretation beyond the classical Langevin equation. These findings can help understand candidate mechanisms underlying these archetypal examples of abrupt climate changes.


2020 ◽  
Vol 82 ◽  
pp. 117-136
Author(s):  
M Reale ◽  
S Salon ◽  
S Somot ◽  
C Solidoro ◽  
F Giorgi ◽  
...  

We investigated the effects of variations in the 4 primary mid-latitude large-scale atmospheric circulation patterns on nutrients potentially limiting phytoplankton growth in the Mediterranean Sea (nitrate and phosphate), with a focus on the key deep convective areas of the basin (Gulf of Lions, Southern Adriatic Sea, Southern Aegean Sea and Rhodes Gyre). Monthly indices of these 4 modes of variability, together with a high-resolution hindcast of the Mediterranean Sea physics and biogeochemistry covering the period 1961-1999, were used to determine the physical mechanisms explaining the influence of these patterns on nutrient distribution and variability. We found a decrease in the concentration of phosphate and nitrate for each unit of increase in the index values of the East Atlantic and East Atlantic/Western Russian variability modes in the area of the Gulf of Lions, while a signal of the opposite sign was associated with the North Atlantic Oscillation in the Aegean Sea and Rhodes Gyre. In both cases, the variability observed was related to a significant variation in the mixed layer depth driven by heat losses and wind stress over the areas. The East Atlantic pattern played a major role in driving the long-term dynamics of both phosphate and nitrate availability in the Gulf of Lions, with a particularly pronounced effect in December and January. For both the Aegean Sea and Rhodes Gyre, the most prominent correlations were found between the North Atlantic Oscillation and phosphate, with a highly consistent behavior in the 2 areas associated with common physical forcing and exchange of properties among them.


Sign in / Sign up

Export Citation Format

Share Document