Diagenetic Development of Clay and Related Minerals in Deep Water Sandstones (S. Spain): Evidence of Lithological Control

Clay Minerals ◽  
1994 ◽  
Vol 29 (1) ◽  
pp. 93-104 ◽  
Author(s):  
M. D. Ruiz Cruz

AbstractThe turbiditic facies of the Aquitanian-Oligocene of the Algeciras and Bolonia Units consist of lutitic-marly beds alternating with varied sandstones. Early diagenetic processes and the development of secondary porosity in sandstones were controlled largely by sedimentary facies. Mineral dissolution processes were important in rocks with high primary porosity (quartzose sandstones) and led to the development of allophane and kaolinite/dickite in later diagenetic stages. In rocks with high contents of biotitic matrix, chlorites and iron oxides were produced, together with the development of secondary porosity. In feldspathic sandstones, the early diagenetic processes produced chlorite, illite, illite-smectite mixed-layers and smaller amounts of kaolinite. In calcareous sandstones, the presence of an early cement prevented, to a certain extent, the dissolution of unstable fragments and restricted the development of clay minerals. The movement of fluids was not important during this early diagenetic stage in controlling the variety or abundance of mineral cements; the controlling factors were the different chemical conditions developed in the pore-solution of the various sandstone types. In spite of similar sandstone burial conditions, the different sandstone lithologies continued to determine the diagenetic processes, especially the degrees of compaction and dissolution. Certain burial processes are common to all levels: the development of reducing conditions is indicated by the development of Fe and Mn carbonates, Fe-dolomites and Fe-chlorites. A later alkaline diagenetic phase was responsible for the development of calcite, feldspar and illite. The circulation of fluids in these stages remained limited, although there was probably some movement from the lutitic-level fluids to the overlying sandstones.

Clay Minerals ◽  
1986 ◽  
Vol 21 (4) ◽  
pp. 459-477 ◽  
Author(s):  
M. W. Goodchild ◽  
J. H. McD. Whitaker

AbstractThe diagenetic history of the Rotliegendes Sandstone reservoir in the Rough Gas Field was studied using thin-sections, XRD analyses and SEM. The Rotliegendes comprises a sequence of fine-grained fluvial sheet-flood sandstones and coarse, gravelly, low-sinuosity channel sandstones, with thin aeolian interbeds, overlain by a sequence of aeolian dune and interdune sandstones. Early, environmentally-related diagnesis (eogenesis) shows a marked variability with sedimentary facies. Within aeolian sandstones, poikilotopic anhydrite and fine, rhombic dolomite are preserved. Fluvially-derived sandstones typically contain infiltrated detrital clays and early authigenic mixed-layer clays, together with coarse, framework-displacive dolomite. Feldspars show varying degrees of alteration within all facies. These eogenetic features reflect patterns of groundwater movement during the Rotliegendes and early Zechstein. Mineral dissolution and precipitation were controlled by the chemistry of the groundwaters. Burial diagenetic (mesogenetic) features are superimposed on eogenetic cements. Authigenic clays have been converted to illitic clays. In addition, mesogenetic chlorite has formed and quartz and strongly ferroan dolomite cements are recognized. These minerals may be related to clay diagenesis within the underlying Carboniferous Coal Measures. Early, framework-supporting anyhdrite, and both phases of dolomite, have been partially dissolved, creating secondary porosity. This is attributed to the action of acidic porewaters, generated by the maturation of organic material within the Carboniferous. Post-dissolution kaolinite, gypsum and minor pyrite infill secondary pores. Gas emplacement from the Late Cretaceous onwards effectively halted further diagenetic reactions.


2021 ◽  
Vol 15 (1-2) ◽  
pp. 37-52
Author(s):  
M. S. C. Tenório ◽  
Z. V. Batista ◽  
G. M. D. Fernandes

The acquisition of geological data is of fundamental importance for the study of areas potentially relevant to the occurrence of petroleum systems. In this context, the development of research in outcropping rock formations has proven to be a potential method to investigate the geology of the geological unit studied in subsurface. One of several examples found in Brazil are the outcrops Barreiras do Boqueirão and Praia de Japaratinga, belonging to the Maceió Formation, located in the northern coast of Alagoas State. The Maceió Formation has the lowest cretaceous sedimentation record within the Alagoas Basin. This sedimentation, present almost in the entire basin, is located mainly in its subsurface. This geological unit is composed of several lithologies, including a turbiditic sequence predominantly formed by shales, sandstones and conglomerates. This environment makes it possible the occurrence of a petroleum system. Our research group chose to investigate this environment because turbiditic sandstones are excellent petroleum reservoirs, and they have a great economic relevance in the Brazilian petroleum scenario. To develop this research, a petrographic characterization of the Maceió Formation sandstones was conducted to help determine the compositional and diagenetic aspects of these rocks and infer the influence of diagenetic processes on the quality of these sandstones as reservoirs. The petrographic analysis showed that the studied sandstones can be classified as arkose and quartzenite, present moderate porosity and good permeability, observed through the predominant presence of floating contacts between the grains. The porosity is predominantly primary intergranular, averaging 15%, but secondary porosity by fracture and dissolution of primary grains also occurs. The sandstones of the Maceió Formation are poorly and moderately selected, with angular, sub-angular and sub-rounded grains, showing low to medium textural maturity, which may also influence the quality of the reservoir, impairing the primary porosity in the samples. The three diagenetic stages were identified as: eodiagenesis, mesodiagenesis, and telodiagenesis. The diagenetic processes found were: mechanical compaction, beginning of chemical compaction, clay infiltration, pyrite cementation, grain dissolution, chlorite cementation, quartz sintaxial growth, and mineral alteration and replacement. Mineral replacement was a phenomenon observed quite expressively in the samples analyzed. This event was evidenced, particularly, by the substitution of muscovite and feldspar for kaolinite, the alteration of biotite was also identified in the samples. Therefore, one can infer that the diagenetic processes had little influence on the reduction of the original porosity in the samples studied. In general, considering all the analyses performed in this research, one can see that the sandstones of the Maceió Formation (northern portion) present a good reservoir quality.


2018 ◽  
Vol 15 (24) ◽  
pp. 7451-7484 ◽  
Author(s):  
Laura A. Casella ◽  
Sixin He ◽  
Erika Griesshaber ◽  
Lourdes Fernández-Díaz ◽  
Martina Greiner ◽  
...  

Abstract. The assessment of diagenetic overprint on microstructural and geochemical data gained from fossil archives is of fundamental importance for understanding palaeoenvironments. The correct reconstruction of past environmental dynamics is only possible when pristine skeletons are unequivocally distinguished from altered skeletal elements. Our previous studies show (i) that replacement of biogenic carbonate by inorganic calcite occurs via an interface-coupled dissolution–reprecipitation mechanism. (ii) A comprehensive understanding of alteration of the biogenic skeleton is only given when structural changes are assessed on both, the micrometre as well as on the nanometre scale.In the present contribution we investigate experimental hydrothermal alteration of six different modern biogenic carbonate materials to (i) assess their potential for withstanding diagenetic overprint and to (ii) find characteristics for the preservation of their microstructure in the fossil record. Experiments were performed at 175 °C with a 100 mM NaCl + 10 mM MgCl2 alteration solution and lasted for up to 35 days. For each type of microstructure we (i) examine the evolution of biogenic carbonate replacement by inorganic calcite, (ii) highlight different stages of inorganic carbonate formation, (iii) explore microstructural changes at different degrees of alteration, and (iv) perform a statistical evaluation of microstructural data to highlight changes in crystallite size between the pristine and the altered skeletons.We find that alteration from biogenic aragonite to inorganic calcite proceeds along pathways where the fluid enters the material. It is fastest in hard tissues with an existing primary porosity and a biopolymer fabric within the skeleton that consists of a network of fibrils. The slowest alteration kinetics occurs when biogenic nacreous aragonite is replaced by inorganic calcite, irrespective of the mode of assembly of nacre tablets. For all investigated biogenic carbonates we distinguish the following intermediate stages of alteration: (i) decomposition of biopolymers and the associated formation of secondary porosity, (ii) homoepitactic overgrowth with preservation of the original phase leading to amalgamation of neighbouring mineral units (i.e. recrystallization by grain growth eliminating grain boundaries), (iii) deletion of the original microstructure, however, at first, under retention of the original mineralogical phase, and (iv) replacement of both, the pristine microstructure and original phase with the newly formed abiogenic product.At the alteration front we find between newly formed calcite and reworked biogenic aragonite the formation of metastable Mg-rich carbonates with a calcite-type structure and compositions ranging from dolomitic to about 80 mol % magnesite. This high-Mg calcite seam shifts with the alteration front when the latter is displaced within the unaltered biogenic aragonite. For all investigated biocarbonate hard tissues we observe the destruction of the microstructure first, and, in a second step, the replacement of the original with the newly formed phase.


2015 ◽  
Vol 45 (2) ◽  
pp. 243-258 ◽  
Author(s):  
Juliana Okubo ◽  
Ricardo Lykawka ◽  
Lucas Veríssimo Warren ◽  
Julia Favoreto ◽  
Dimas Dias-Brito

<p>Carbonate rocks from the Macaé Group (Albian) represent an example of carbonate sedimentation related to the drift phase in Campos Basin. This study presents depositional features, integrating them with diagenetic and stratigraphic aspects of the Macaé Group carbonates including the upper part of the Quissamã Formation and the lower part of the Outeiro Formation. Macroscopic analyses in cores and microscopic ones in thin sections allowed the recognition of eleven sedimentary facies - nine of them corresponding to the Quissamã Formation and two of them representing the Outeiro Formation. These facies were grouped into five facies associations. Oolitic grainstones and oncolitic grainstones are interpreted to be deposited in shallow depth probably in shoals above the fair weather wave base. The interbanks between shoals were formed in less agitated waters and characterized by deposition of peloidal bioclastic packstones and wackestones representative of sedimentation in calm waters. Bioclastic packstones and oolitic packstones/wackestones represent allochthonous deposits related to the beginning of the regional drowning that occur in upper Quissamã Formation. Pithonellids wackestones and bioclastic wackestones with glauconite are related to deep water deposits, characteristics of the Outeiro Formation. Post-depositional features revealed the action of diagenetic processes as, micritization, cimentation, dissolution, compaction, dolomitization and recrystallization occurred during the eo- and mesodiagenesis phases. Vertical facies analysis suggests shallowing upward cycles stacked in a sequence progressively deeper towards the top (from the Quissamã Formation to the Outeiro Formation).</p>


Author(s):  
Fadhil N. Sadooni ◽  
Hamad Al-Saad Al-Kuwari ◽  
Ahmad Sakhaee-Pour ◽  
Wael S. Matter

Introduction: The Jurassic Arab Formation is the main oil reservoir in Qatar. The Formation consists of a succession of limestone, dolomite, and anhydrite. Materials and methods: A multi-proxy approach has been used to study the Formation. This approach is based on core analysis, thin sections, and log data in selected wells in Qatar. Results: The reservoir has been divided into a set of distinctive petrophysical units. The Arab Formation consists of cyclic sediments of oolitic grainstone/packstone, foraminifera-bearing packstone-wackestone, lagoonal mudstone and dolomite, alternating with anhydrite. The sediments underwent a series of diagenetic processes such as leaching, micritization, cementation, dolomitization and fracturing. The impact of these diagenetic processes on the different depositional fabrics created a complex porosity system. So, in some cases there is preserved depositional porosity such as the intergranular porosity in the oolitic grainstone, but in other cases, diagenetic cementation blocked the same pores and eventually destroyed them. In other cases, diagenesis improved the texture of non-porous depositional texture such as mudstone through incipient dolomitization creating inter-crystalline porosity. Dissolution created vugs and void secondary porosity in otherwise non-porous foraminiferal wackestone and packstone. Therefore, creating a matrix of depositional fabrics versus diagenetic processes enabled the identification of different situations in which porosity was either created or destroyed. Future Directions: By correlating the collected petrographic data with logs, it will become possible to identify certain “facio-diagenetic” signatures on logs which will be very useful in both exploration and production. Studying the micro and nano-porosity will provide a better understanding of the evolution and destruction of its porosity system.


2021 ◽  
pp. 4810-4818
Author(s):  
Marwah H. Khudhair

     Shuaiba Formation is a carbonate succession deposited within Aptian Sequences. This research deals with the petrophysical and reservoir characterizations characteristics of the interval of interest in five wells of the Nasiriyah oil field. The petrophysical properties were determined by using different types of well logs, such as electric logs (LLS, LLD, MFSL), porosity logs (neutron, density, sonic), as well as gamma ray log. The studied sequence was mostly affected by dolomitization, which changed the lithology of the formation to dolostone and enhanced the secondary porosity that replaced the primary porosity. Depending on gamma ray log response and the shale volume, the formation is classified into three zones. These zones are A, B, and C, each can be split into three rock intervals in respect to the bulk porosity measurements. The resulted porosity intervals are: (I) High to medium effective porosity, (II) High to medium inactive porosity, and (III) Low or non-porosity intervals. In relevance to porosity, resistivity, and water saturation points of view, there are two main reservoir horizon intervals within Shuaiba Formation. Both horizons appear in the middle part of the formation, being located within the wells Ns-1, 2, and 3. These intervals are attributed to high to medium effective porosity, low shale content, and high values of the deep resistivity logs. The second horizon appears clearly in Ns-2 well only.


Soil Systems ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 46 ◽  
Author(s):  
Eleanor Bakker ◽  
Fabien Hubert ◽  
Michelle M. Wander ◽  
Bruno Lanson

Impact of continuous cropping on clay mineralogy was assessed on a collection of unfertilized soil samples from the Morrow Plots experimental fields covering 110 years of long crop rotations. Evolution of mineralogy was quantitatively determined by fitting X-ray diffraction (XRD) patterns from four size fractions (50–2, 2–0.2, 0.2–0.05 and <0.05 µm) of the surface horizon (0–20 cm). The mineralogy of the three clay subfractions (2–0.2 µm, 0.2–0.05 µm and <0.05 µm) consists mainly of coexisting illite-smectite-chlorite whose compositions range from discrete illite (in the 2–0.2 µm subfraction) to discrete smectite (in the <0.05 µm subfraction). Mixed layers of similar compositions were used to fit XRD data from all clay subfractions. With decreasing size fractions, both the size of the coherent scattering domains and the proportion of illite-rich mixed layers decrease, thus accounting for the higher cation exchange measured in the <0.05 µm subfraction compared to other clay subfractions. The analysis of fine clay subfractions (<0.2 µm or lower) provided key information and constraints to a complete and accurate description of the bulk <2 µm fraction. Additional constraints derived from chemical treatments (K-saturation and heating) proved to be especially useful to propose a reliable structure model for these fine clay subfractions because of their weakly modulated diffraction signature. Mineralogy of all subfractions considered is essentially stable over the studied period (1904–2014), with the relative proportion of the different clay layer types (illite, smectite, kaolinite, chlorite) showing no significant evolution in the bulk <2 µm fraction. A century of continuous cropping thus results essentially in an increase of fine clay particles (<0.05 µm) and a decrease of the 0.2–0.05 µm subfraction, indicative of clay mineral dissolution and consistent with observed increase of cation exchange capacity with time. The relative proportion of the bulk <2 µm fraction is nearly constant over the studied period, indicative of minimal export of clay phases.


2020 ◽  
Vol 20 (4) ◽  
pp. 1567-1579
Author(s):  
M. Cetina ◽  
J-D. Taupin ◽  
S. Gómez ◽  
N. Patris

Abstract Metamorphic, igneous and sedimentary rocks, with low to no primary porosity, outcrop in the La Moza micro-basin stream (headwater of the Rio de Oro). In this high mountain system, water isotopic composition of rainwater, water isotopes and geochemistry of groundwater (springs) and surface water were determined. Groundwater flows are associated to phreatic aquifers in relationship with secondary porosity generated by fracturing, which is increased by dissolution processes in case of carbonate formation producing karstic systems and by the weathering phenomenon mainly affecting granodioritic rocks. Water geochemistry shows low to medium electrical conductivity (EC) depending on the geological formation, but a unique calcium bicarbonate facies. Spring water EC shows limited temporal variations. The isotopic composition of spring indicates a meteoric origin, local infiltration and groundwater flows with low residence time. A conceptual model of the recharge zone is proposed that crosses the surface watershed and covers part of the adjacent Rio Jordán basin, where the Berlin Paramo is located.


Author(s):  
Satoru Miyoshi ◽  
Shinya Morikami ◽  
Yukinobu Kimura ◽  
Tomoko Jinno ◽  
Shuichi Yamamoto

The laboratory experiment was done that 1.0mol/L sodium hydroxide solution was injected to the compacted bentonite whose density is the same as the prospected value in the concept of the intermediate-level disposal in Japan in the circumstance of 70°C temperature. After the injection of the alkali solution for approximately 600 days, the bentonite was taken out of the apparatus and some sorts of analysis were done. The accompanying minerals in the bentonite, calcedony and quartz, were dissolved and disappeared in XRD charts. Then analcime was precipitated as a secondary mineral. Although montmorillonite was dissolved, the mass fraction of it was kept approximately. The hydraulic conductivity of the bentonite calculated using the flow rate at the end of the injection of alkali solution was smaller than the prospected value based on a widely-used empirical model of the hydraulic conductivity of compacted bentonite as a function of the equivalent concentration of pore solution, montmorillonite partial void ratio, and the ratio of sodium ion equivalent to the exchangeable cation equivalent. The reasons for the difference were supposed to be the decrease of pore size brought by mineral dissolution and the large viscosity of pore solution involving high concentration aqueous silicon.


2000 ◽  
Vol 40 (1) ◽  
pp. 213
Author(s):  
G.M. Kraishan ◽  
N.M. Lemon

Calcite is a common authigenic mineral in subsurface sandstones of the Barrow Sub-basin, North West Shelf. It is present in several formations from different stratigraphic horizons, ranging from Permian to Cretaceous. It occurs as poikilotopic cement and fracture-fill particularly concentrated along one of the major listric faults in the eastern part of the sub-basin. A detailed petrographical and geochemical study was performed on the Early Cretaceous calcite cements in an attempt to provide information on their origin, distribution and effect on reservoir quality. Calcite cements are Ca-rich, Mg-poor with considerable amounts of Fe and are characterised by bright orange to yellow luminescent colours. The δ13C and δ180 values vary considerably, δ13C ranging from −2.0 to −23.5 %o PDB (average of −10.2 %o, ± 4.8 PDB), whilst δ180 values range from 19.3 to 25.4 SMOW (average of 21.1 %o, ± 1.8 SMOW). Calcite cements are characterised by elevated 87Sr/86Sr ratios with a range of 0.71029 to 0.71058 (average of 0.71043 ± 0.00012). The elemental and stable isotope compositions of the calcite cements indicate cementation from meteoric pore-waters, with the same source and timing of occurrence.Calcite cements formed in the mid-diagenetic history below 45°C. The carbon isotopic composition of calcite cements is interpreted to be sourced from bicarbonate and carbon dioxide generated by thermal decarboxylation of kerogen and oxidation of the early-generated oil. The model for calcite formation involves fluids rich in organic carbon having migrated up dip along faults to be trapped and mixed with meteoric-derived C02 to form pervasive calcite-cemented zones. These zones may reach up to 8 m thick and occlude the intergranular primary porosity. Subsequent tectonic reactivation and maturation of organic matter has resulted in late acidic water invasion to partially or completely dissolve the calcite cement to locally enhance reservoir quality.


Sign in / Sign up

Export Citation Format

Share Document