scholarly journals Hydrothermal alteration of aragonitic biocarbonates: assessment of micro- and nanostructural dissolution–reprecipitation and constraints of diagenetic overprint from quantitative statistical grain-area analysis

2018 ◽  
Vol 15 (24) ◽  
pp. 7451-7484 ◽  
Author(s):  
Laura A. Casella ◽  
Sixin He ◽  
Erika Griesshaber ◽  
Lourdes Fernández-Díaz ◽  
Martina Greiner ◽  
...  

Abstract. The assessment of diagenetic overprint on microstructural and geochemical data gained from fossil archives is of fundamental importance for understanding palaeoenvironments. The correct reconstruction of past environmental dynamics is only possible when pristine skeletons are unequivocally distinguished from altered skeletal elements. Our previous studies show (i) that replacement of biogenic carbonate by inorganic calcite occurs via an interface-coupled dissolution–reprecipitation mechanism. (ii) A comprehensive understanding of alteration of the biogenic skeleton is only given when structural changes are assessed on both, the micrometre as well as on the nanometre scale.In the present contribution we investigate experimental hydrothermal alteration of six different modern biogenic carbonate materials to (i) assess their potential for withstanding diagenetic overprint and to (ii) find characteristics for the preservation of their microstructure in the fossil record. Experiments were performed at 175 °C with a 100 mM NaCl + 10 mM MgCl2 alteration solution and lasted for up to 35 days. For each type of microstructure we (i) examine the evolution of biogenic carbonate replacement by inorganic calcite, (ii) highlight different stages of inorganic carbonate formation, (iii) explore microstructural changes at different degrees of alteration, and (iv) perform a statistical evaluation of microstructural data to highlight changes in crystallite size between the pristine and the altered skeletons.We find that alteration from biogenic aragonite to inorganic calcite proceeds along pathways where the fluid enters the material. It is fastest in hard tissues with an existing primary porosity and a biopolymer fabric within the skeleton that consists of a network of fibrils. The slowest alteration kinetics occurs when biogenic nacreous aragonite is replaced by inorganic calcite, irrespective of the mode of assembly of nacre tablets. For all investigated biogenic carbonates we distinguish the following intermediate stages of alteration: (i) decomposition of biopolymers and the associated formation of secondary porosity, (ii) homoepitactic overgrowth with preservation of the original phase leading to amalgamation of neighbouring mineral units (i.e. recrystallization by grain growth eliminating grain boundaries), (iii) deletion of the original microstructure, however, at first, under retention of the original mineralogical phase, and (iv) replacement of both, the pristine microstructure and original phase with the newly formed abiogenic product.At the alteration front we find between newly formed calcite and reworked biogenic aragonite the formation of metastable Mg-rich carbonates with a calcite-type structure and compositions ranging from dolomitic to about 80 mol % magnesite. This high-Mg calcite seam shifts with the alteration front when the latter is displaced within the unaltered biogenic aragonite. For all investigated biocarbonate hard tissues we observe the destruction of the microstructure first, and, in a second step, the replacement of the original with the newly formed phase.

2018 ◽  
Author(s):  
Laura A. Casella ◽  
Sixin He ◽  
Erika Griesshaber ◽  
Lourdes Fernández-Díaz ◽  
Elizabeth M. Harper ◽  
...  

Abstract. The assessment of diagenetic overprint on microstructural and geochemical data gained from fossil archives is of fundamental importance for understanding palaeoenvironments. A correct reconstruction of past environmental dynamics is only possible when pristine skeletons are unequivocally distinguished from altered skeletal elements. Our previous studies (Casella et al., 2017) have shown that replacement of biogenic carbonate by inorganic calcite occurs via an interface coupled dissolution–reprecipitation mechanism. Furthermore, for a comprehensive assessment of alteration, structural changes have to be assessed on the nanoscale as well, which documents the replacement of pristine nanoparticulate calcite by diagenetic nanorhombohedral calcite (Casella et al., 2018a, b). In the present contribution we investigated six different modern biogenic carbonate microstructures for their behaviour under hydrothermal alteration in order to assess their potential to withstand diagenetic overprint and to test the integrity of their preservation in the fossil record. For each microstructure (a) the evolution of biogenic aragonite and calcite replacement by inorganic calcite was examined, (b) distinct carbonate mineral formation steps on the micrometre scale were highlighted, (c) microstructural changes at different stages of alteration were explored, and (d) statistical analysis of differences in basic mineral unit dimensions in pristine and altered skeletons was performed. The latter analysis enables an unequivocal determination of the degree of diagenetic overprint and discloses information especially about low degrees of hydrothermal alteration.


2020 ◽  
Vol 20 (4) ◽  
pp. 1567-1579
Author(s):  
M. Cetina ◽  
J-D. Taupin ◽  
S. Gómez ◽  
N. Patris

Abstract Metamorphic, igneous and sedimentary rocks, with low to no primary porosity, outcrop in the La Moza micro-basin stream (headwater of the Rio de Oro). In this high mountain system, water isotopic composition of rainwater, water isotopes and geochemistry of groundwater (springs) and surface water were determined. Groundwater flows are associated to phreatic aquifers in relationship with secondary porosity generated by fracturing, which is increased by dissolution processes in case of carbonate formation producing karstic systems and by the weathering phenomenon mainly affecting granodioritic rocks. Water geochemistry shows low to medium electrical conductivity (EC) depending on the geological formation, but a unique calcium bicarbonate facies. Spring water EC shows limited temporal variations. The isotopic composition of spring indicates a meteoric origin, local infiltration and groundwater flows with low residence time. A conceptual model of the recharge zone is proposed that crosses the surface watershed and covers part of the adjacent Rio Jordán basin, where the Berlin Paramo is located.


2021 ◽  
Author(s):  
Pablo Forjanes ◽  
María Simonet Roda ◽  
Martina Greiner ◽  
Erika Griesshaber ◽  
Nelson A. Lagos ◽  
...  

Abstract. Carbonate biological hard tissues are valuable archives of environmental information. However, this information can be blurred or even completely lost as hard tissues undergo diagenetic alteration. This is more likely to occur in aragonitic skeletons because bioaragonite commonly transforms into calcite during diagenesis. For reliably using aragonitic skeletons as geochemical proxies, it is necessary to understand in depth the diagenetic alteration processes that they undergo. Several works have recently investigated the hydrothermal alteration of aragonitic hard tissues during short term experiments at high temperatures (T > 160 °C). In this study, we conduct long term (4 and 6 months) hydrothermal alteration experiments at 80 °C using burial-like fluids. We document and evaluate the changes undergone by the outer and inner layers of Arctica islandica shell, the prismatic and nacreous layers of Haliotis ovina shell, and the skeleton of Porites sp. combining a variety of analytical tools (X-ray diffraction, thermogravimetry analysis, laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and atomic force microscopy). We demonstrate that this approach is the most adequate to trace subtle, diagenetic alteration-related changes in aragonitic biocarbonates. Furthermore, we unveil that the diagenetic alteration of aragonitic hard tissues is a complex multi-step process where major changes occur even at the low temperature used in this study and well before any aragonite into calcite transformation takes place. Alteration starts with biopolymer decomposition and concomitant generation of secondary porosity. These processes are followed by abiogenic aragonite precipitation that partially or totally obliterates the secondary porosity. Only afterwards any transformation of aragonite into calcite takes place. The kinetics of the alteration is highly dependent on primary microstructural features of the aragonitic biomineral. While the skeleton of Porites sp. remains virtually unaltered within the time spam of the experiments, Haliotis ovina nacre undergoes extensive abiogenic aragonite precipitation, the outer and inner layers of Arctica islandica shell are significantly affected by aragonite transformation into calcite and this transformations extensive in the case of the prismatic layer of Haliotis ovina shell. Our results suggest that most aragonitic fossil archives may be overprinted, even those free of clear diagenetic alteration signs. This finding may have major implications for the use of these archives as geochemical proxies.


2017 ◽  
Vol 13 (2) ◽  
pp. 29-32 ◽  
Author(s):  
Виктор Никольский ◽  
Viktor Nikol'skiy ◽  
О. Успенская ◽  
O. Uspenskaya ◽  
Алексей Александров ◽  
...  

2021 ◽  
pp. 4810-4818
Author(s):  
Marwah H. Khudhair

     Shuaiba Formation is a carbonate succession deposited within Aptian Sequences. This research deals with the petrophysical and reservoir characterizations characteristics of the interval of interest in five wells of the Nasiriyah oil field. The petrophysical properties were determined by using different types of well logs, such as electric logs (LLS, LLD, MFSL), porosity logs (neutron, density, sonic), as well as gamma ray log. The studied sequence was mostly affected by dolomitization, which changed the lithology of the formation to dolostone and enhanced the secondary porosity that replaced the primary porosity. Depending on gamma ray log response and the shale volume, the formation is classified into three zones. These zones are A, B, and C, each can be split into three rock intervals in respect to the bulk porosity measurements. The resulted porosity intervals are: (I) High to medium effective porosity, (II) High to medium inactive porosity, and (III) Low or non-porosity intervals. In relevance to porosity, resistivity, and water saturation points of view, there are two main reservoir horizon intervals within Shuaiba Formation. Both horizons appear in the middle part of the formation, being located within the wells Ns-1, 2, and 3. These intervals are attributed to high to medium effective porosity, low shale content, and high values of the deep resistivity logs. The second horizon appears clearly in Ns-2 well only.


2017 ◽  
Vol 14 (6) ◽  
pp. 1461-1492 ◽  
Author(s):  
Laura A. Casella ◽  
Erika Griesshaber ◽  
Xiaofei Yin ◽  
Andreas Ziegler ◽  
Vasileios Mavromatis ◽  
...  

Abstract. Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. In generating their mineralised hard parts, most marine invertebrates produce metastable aragonite rather than the stable polymorph of CaCO3, calcite. After death of the organism the physiological conditions, which were present during biomineralisation, are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features. In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100 and 175 °C, with the main focus on 100 and 175 °C, reaction durations between 1 and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100 °C (and at 0.1 MPa pressure) for 28 days and for samples altered at 175 °C (and at 0.9 MPa pressure) for 7 and 84 days. During hydrothermal alteration at 100 °C for 28 days most but not the entire biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments up to 174 °C, there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175 °C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days. Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 µm, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to 1 mm after 7 days of alteration. Aragonite is metastable at all applied conditions. Only a small bulk thermodynamic driving force exists for the transition to calcite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50 to ca. 170 °C or, additionally, to the presence of magnesium. Correspondingly, in Mg2+-bearing solutions the newly formed calcite crystals are larger than in Mg2+-free solutions. Overall, the aragonite–calcite transition occurs via an interface-coupled dissolution–reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175 °C contributes to explaining why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record.


2013 ◽  
Vol 734-737 ◽  
pp. 377-383
Author(s):  
Qing Li ◽  
Xue Lian You ◽  
Wen Xuan Hu ◽  
Jing Quan Zhu ◽  
Zai Xing Jiang

The Cambrian dolomite reservoir is an important target in oil and gas exploration. The Penglaiba section in the Keping area is typically examined in studies dealing with the Cambrian dolomite reservoirs of northwestern Tarim Basin. Based on sedimentological, petrographic, and geochemical data, lithofacies and fluids are identified as the major factors that control the dolomite reservoir in the study area. Lithoacies are fundamental to reservoir evolution because they provide suitable channels for dolomitization and dissolution of fluids that, in turn, facilitate the formation of high quality reservoirs. The lithofacies which could form high-quality reservoirs in the study area are: slope slip (collapse) facies, gypsum related facies, and algae dolomite facies. The sources of fluids include seawater, meteoric freshwater, diagenetic/hydrocarbon fluid, and hydrothermal fluid. These fluids lead to dolomitization, penecontemporaneous meteoric dissolution, hypergene dissolution, organic acid dissolution and hydrothermal dissolution that result in secondary porosity, and as such, they have a significant contribution to reservoir evolution.


2000 ◽  
Vol 40 (1) ◽  
pp. 213
Author(s):  
G.M. Kraishan ◽  
N.M. Lemon

Calcite is a common authigenic mineral in subsurface sandstones of the Barrow Sub-basin, North West Shelf. It is present in several formations from different stratigraphic horizons, ranging from Permian to Cretaceous. It occurs as poikilotopic cement and fracture-fill particularly concentrated along one of the major listric faults in the eastern part of the sub-basin. A detailed petrographical and geochemical study was performed on the Early Cretaceous calcite cements in an attempt to provide information on their origin, distribution and effect on reservoir quality. Calcite cements are Ca-rich, Mg-poor with considerable amounts of Fe and are characterised by bright orange to yellow luminescent colours. The δ13C and δ180 values vary considerably, δ13C ranging from −2.0 to −23.5 %o PDB (average of −10.2 %o, ± 4.8 PDB), whilst δ180 values range from 19.3 to 25.4 SMOW (average of 21.1 %o, ± 1.8 SMOW). Calcite cements are characterised by elevated 87Sr/86Sr ratios with a range of 0.71029 to 0.71058 (average of 0.71043 ± 0.00012). The elemental and stable isotope compositions of the calcite cements indicate cementation from meteoric pore-waters, with the same source and timing of occurrence.Calcite cements formed in the mid-diagenetic history below 45°C. The carbon isotopic composition of calcite cements is interpreted to be sourced from bicarbonate and carbon dioxide generated by thermal decarboxylation of kerogen and oxidation of the early-generated oil. The model for calcite formation involves fluids rich in organic carbon having migrated up dip along faults to be trapped and mixed with meteoric-derived C02 to form pervasive calcite-cemented zones. These zones may reach up to 8 m thick and occlude the intergranular primary porosity. Subsequent tectonic reactivation and maturation of organic matter has resulted in late acidic water invasion to partially or completely dissolve the calcite cement to locally enhance reservoir quality.


1999 ◽  
Vol 39 (1) ◽  
pp. 343 ◽  
Author(s):  
J.D. Gorter ◽  
J.M. Davies

The Perth, Carnarvon, Browse, and Bonaparte basins contain Permian shallowmarine carbonates. Interbedded with clastic oil and gas reservoirs in the northern Perth Basin (Wagina Formation), and gas reservoirs in the Bonaparte Basin (Cape Hay and Tern formations), these carbonates also have the potential to contain significant hydrocarbon reservoirs. Limestone porosity may be related to the primary depositional fabric, or secondary processes such as dolomitisation, karstification, and fracturing. However, in the Upper Permian interval of the North West Shelf and northern Perth Basin, where there are no indications of significant preserved primary porosity in the limestones, all known permeable zones are associated with secondary porosity. Fractured Permian carbonates have the greatest reservoir potential in the Timor Sea. Tests of fractured Pearce Formation limestones in Kelp Deep–1 produced significant quantities of gas, and a test of fractured Dombey Formation limestone in Osprey–1 flowed significant quantities of water and associated gas. Minor fracture porosity was associated with gas shows in dolomitic limestones in Fennel–1 in the Carnarvon Basin, and fractures enhance the reservoir in the Woodada Field in the northern Perth Basin. Karst formation at sub-aerial unconformities can lead to the development of secondary porosity and caverns, as in the Carnarvon Basin around Dillson–1. Minor karst is also developed at the top Dombey Formation unconformity surface in the Timor Sea region.


KURVATEK ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 67-76
Author(s):  
Hanindya Ramadhani

Stage of diagenesis of a rock will effect the quality of the rock as a reservoir. Hence, it is a necessary to analyze the diagenesis stage of sandstone at Anoa Field, West Natuna Basin, since the diagenesis stage has not been identified properly. The analysis is carried out using thin section method in five different depths. The product of diagenesis is observed for its cementation level, compaction, recrystallization, dissolution, replacement, and type of porosity wich developed in the rock. The appearance of quartz overgrowth cement and pore filling and pore lining calcite cement show a diagenesis stage which are recrystallization and cementation. The appearance of bent mica mineral and suture grain contact can be a sign of late stage compaction. Dissolution of matrix, cement and grain in the sample show that the rock has come to mesodiagenesis stage. As a result of the observation, the conclusion can be made that the rock has passed the eodiagenesis and mesodigenesis phase. Porosity of the section is both primary porosity (interparticle) and secondary porosity (dissolved) with a range 15%-20% (medium to good). Crossplot depth vs porosity show a linear distribution, which when the depth is increase the porosity will decrease. So it can be concluded that the process of diagenesis is very influential on the quality of reservoir rocks in the study area.Keyword: Gabus Formation, sandstone diagenesis, stage of diagenesis.


Sign in / Sign up

Export Citation Format

Share Document