Clay minerals in the Namacotche Pegmatite Group from Zambezia Province, Mozambique: main constituents of late-stage secondary paragenesis

Clay Minerals ◽  
2008 ◽  
Vol 43 (4) ◽  
pp. 597-613 ◽  
Author(s):  
M. A. Sequeira Braga ◽  
C. Leal Gomes ◽  
J. Duplay ◽  
H. Paquet

AbstractNamacotche gem-bearing pegmatites of Alto Ligonha pegmatite district are heterogeneous, strongly fractionated, and have large Li and Ta and extremely large Cs contents. Clay samples were collected in fracture infillings and dilation cavities with gemstones and were studied using X-ray diffraction (XRD), polarized light microscope, scanning electron microscopy-energy dispersive spectroscopy, high-resolution transmission electron microscopy and chemical analyses. The <2 μm fraction contains cookeite, illite, illite-smectite and suggested irregular mixed-layer cookeite-smectite, beidellite, montmorillonite, kaolinite and goethite.The XRD patterns of chlorite and their d values suggest the presence of ‘di-trioctahedral chlorite’ similar to cookeite-Ia polytype. Cookeite chemical analyses show that Li contents range from 0.82 to 1.08 atoms per half unit cell.A close relationship has been established between occurrences of gemstones and clay minerals. Some important textures and crystal chemistry are discussed.The main gemstones related to the Namacotche Pegmatite are: morganite (pink cesian beryl), kunzite (spodumene) and elbaite tourmaline. As the mechanisms responsible for the gemstone formation take place at low temperature, the clay minerals paragenesis cookeite ± cookeite-smectite interstratification ± beidellite + montmorillonite ± illite-smectite interstratification, represents a late-stage secondary paragenesis, generated by hydrothermal alteration.

Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 718
Author(s):  
Isis Armstrong Dias ◽  
Leonardo Fadel Cury ◽  
Bruno Guimarães Titon ◽  
Gustavo Barbosa Athayde ◽  
Guilherme Fedalto ◽  
...  

Mg clay minerals are usually associated with carbonates in alkaline-saline environments, precipitated from solution and/or transformation from other minerals. The aim of this research is to identify the mineralogy and geochemistry of clay minerals in different alkaline lakes in the Nhecolândia region, the southernmost region of the Pantanal wetland (Brazil). Sediment samples were analyzed by X-ray diffraction, X-ray fluorescence, scanning electron microscopy and transmission electron microscopy. Water samples were analyzed, determining their main cations and anions, in order to understand their relationship with the clays. The analyses allowed classifying the water bodies as saline, oligosaline and freshwater lakes. The sediments are composed mainly of quartz and a fine-clay fraction, dominated by illite, kaolinite and smectite. The XRD results showed illite and smectite mixed-layered in the saline lakes at Barranco Alto farm, whereas at Nhumirim farm, trioctahedral smectite was only observed in one lake. The smectite minerals were normally identified coupled with calcite at the top of the sequences, associated with exopolymeric substances (EPS) in the lakes, suggesting that these minerals are precipitating due to the physical-chemical and biological conditions of the water bodies.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Fei Long ◽  
Shuyi Mo ◽  
Yan Zeng ◽  
Shangsen Chi ◽  
Zhengguang Zou

Flower-like Cu2ZnSnS4(CZTS) nanoflakes were synthesized by a facile and fast one-pot solution reaction using copper(II) acetate monohydrate, zinc acetate dihydrate, tin(IV) chloride pentahydrate, and thiourea as starting materials. The as-synthesized samples were characterized by X-ray diffraction (XRD), Raman scattering analysis, field emission scanning electron microscopy (FESEM) equipped with an energy dispersion X-ray spectrometer (EDS), transmission electron microscopy (TEM), and UV-Vis absorption spectra. The XRD patterns shown that the as-synthesized particles were kesterite CZTS and Raman scattering analysis and EDS confirmed that kesterite CZTS was the only phase of product. The results of FESEM and TEM show that the as-synthesized particles were flower-like morphology with the average size of 1~2 μm which are composed of 50 nm thick nanoflakes. UV-Vis absorption spectrum revealed CZTS nanoflakes with a direct band gap of 1.52 eV.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4631 ◽  
Author(s):  
Juan Aliaga ◽  
Pablo Vera ◽  
Juan Araya ◽  
Luis Ballesteros ◽  
Julio Urzúa ◽  
...  

In this research, we report a simple hydrothermal synthesis to prepare rhenium (Re)- doped MoS2 flower-like microspheres and the tuning of their structural, electronic, and electrocatalytic properties by modulating the insertion of Re. The obtained compounds were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Structural, morphological, and chemical analyses confirmed the synthesis of poorly crystalline Re-doped MoS2 flower-like microspheres composed of few stacked layers. They exhibit enhanced hydrogen evolution reaction (HER) performance with low overpotential of 210 mV at current density of 10 mA/cm2, with a small Tafel slope of 78 mV/dec. The enhanced catalytic HER performance can be ascribed to activation of MoS2 basal planes and by reduction in charge transfer resistance during HER upon doping.


2008 ◽  
Vol 23 (12) ◽  
pp. 3275-3280 ◽  
Author(s):  
K.H. Lee ◽  
J.Y. Lee ◽  
H.C. Jeon ◽  
T.W. Kang ◽  
H.Y. Kwon ◽  
...  

The (Ga1−xMnx)N nanorods were grown on Al2O3 (0001) substrates by using rf-associated molecular beam epitaxy. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected-area diffraction pattern (SADP) results showed that the (Ga1−xMnx)N nanorods had (0001) preferential orientations. XRD patterns showed that the (Ga1−xMnx)N nanorods contained a small number of grains with different preferred orientations. High-resolution TEM (HRTEM) images showed that the (Ga1−xMnx)N nanorods consisted of different preferentially oriented grains. The initial formation mechanisms for the (Ga1−xMnx)N nanorods grown on Al2O3 (0001) substrates are described on the basis of the XRD, the TEM, the SADP, and the HRTEM results.


2013 ◽  
Vol 712-715 ◽  
pp. 271-279
Author(s):  
Fei Ding ◽  
Shuang Xi Liu

A new organic silicane which is bridged by a long amino-functionalized alkyl chain was prepared and used as the precursor in the synthesis of a series of PMO materials. The organic silicane was added into the reaction system in CH2Cl2and the PMO materials were prepared by a simple stirring method under acidic condition, with a nonionic surfactantBrij 76 as template. To find the proper synthesis condition, the time of stirring and the proportion of organic silicane and TEOS were varied. Liquid and solid state NMR, X-ray diffraction (XRD) patterns, thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and N2-physisorption properties were used to characterize the structures.


2014 ◽  
Vol 21 (02) ◽  
pp. 1450031
Author(s):  
SHIHUA ZHAO ◽  
ZHENG WANG ◽  
MINGQUAN WANG ◽  
YUTING CUI ◽  
QUANLIN LIU

Micron-alumina is expected to be of new properties and applications owing to its different morphology structures, which is prepared by the conventional preparation methods. X-ray diffraction (XRD) patterns present that the micron-alumina has poly-crystalline structure. Scanning electron microscopy (SEM) shows that the micron-alumina looks like a bouquet of flowers and its surface is covered with much micron-strips. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) show that the micron-alumina is composed of many particles, which has polycrystalline structure. PL spectra display that emission peak of the micron-alumina centers at 301 nm, which attributes to the F + centers. A schematic drawing for electronic transitions in the excitation and emission processes is proposed.


Soil Research ◽  
1994 ◽  
Vol 32 (4) ◽  
pp. 805 ◽  
Author(s):  
GJ Churchman ◽  
PG Slade ◽  
PG Self ◽  
LJ Janik

The clay minerals in the < 2 �m, and finer, size fractions of several horizons from each of five Australian soils of different types and from different locations have been analysed by X-ray diffraction, infrared spectroscopy, transmission electron microscopy and X-ray fluorescence. Samples from each profile contained a phase in which layers of smectite and of kaolin (positively identified as kaolinite) were randomly interstratified with each other. The relative proportions of the two types of layers varied widely. One interstratified phase contained 70% smectite. This value for smectite content of kaolin-smectites is as high as any reported in the literature. The charges associated with the interstratified smectite layers also differed substantially. Discrete kaolinite commonly occurred along with interstratified kaolinite-smectite, Towards the surfaces of the soils, the proportions of kaolinite in the interstratified phases increased at the expense of smectite.


Author(s):  
H.R. Wenk

Over the last ten years the electron microscope has become well-established in mineralogical research and what used to be an exotic instrument has found its way into several geology departments. The rapidly growing literature on electron microscopy in mineralogy has recently been summarized (Wenk et al., 1976) and there is not much point in systematically reviewing progress of the last two years. Philosophy and techniques remained largely the same except that there is more emphasis on high resolution, and energy dispersive X-ray detectors have become standard attachments of electron microscopes. Instead I would like to use some examples studied at the Geology Department at Berkeley during the last few months to illustrate a variety of applications in materials which could not be investigated with conventional techniques such as light microscopy, standard chemical analyses and X-ray diffraction. Geology is a broad science which ranges from the study of crystal structures on the atomic scale to processes taking place during mountain building on the scale of the size of continents. The transmission electron microscope has been used in such diverse fields as crystallography, petrology, rock deformation, stratigraphy and environmental geology.


Sign in / Sign up

Export Citation Format

Share Document