scholarly journals The Tournemire industrial analogue: reactive-transport modelling of a cement–clay interface

Clay Minerals ◽  
2013 ◽  
Vol 48 (2) ◽  
pp. 167-184 ◽  
Author(s):  
C. Watson ◽  
D. Savage ◽  
J. Wilson ◽  
S. Benbow ◽  
C. Walker ◽  
...  

AbstractIn the post-closure period of a geological disposal facility for radioactive waste, leaching of cement components is likely to give rise to an alkaline plume which will be in chemical disequilibrium with the host rock (which is clay in some concepts) and other engineered barrier system materials used in the facility, such as bentonite. An industrial analogue for cement-clay interaction can be found at Tournemire, southern France, where boreholes filled with concrete and cement remained in contact with the natural mudstone for 15–20 years. The boreholes have been overcored, extracted and mineralogical characterization has been performed. In this study, a reactive-transport model of the Tournemire system has been set up using the general-purpose modelling tool QPAC. Previous modelling work has been built upon by using the most up-to-date data and modelling techniques, and by adding both ion exchange and surface complexation processes in the mudstone. The main features observed at Tournemire were replicated by the model, including porosity variations and precipitation of carbonates, K-feldspar, ettringite and calcite. It was found that ion exchange needed to be included in order for C-S-H minerals to precipitate in the mudstone, providing a better match with the mineralogical characterization. The additional inclusion of surface complexation, however, led to limited calcite growth at the concrete-mudstone interface unlike samples taken from the Tournemire site that have a visible line of crusty carbonates along the interface.

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2161
Author(s):  
Ruicheng Zhang ◽  
Nianqing Zhou ◽  
Xuemin Xia ◽  
Guoxian Zhao ◽  
Simin Jiang

Multicomponent reactive transport modeling is a powerful tool for the comprehensive analysis of coupled hydraulic and biochemical processes. The performance of the simulation model depends on the accuracy of related model parameters whose values are usually difficult to determine from direct measurements. In this situation, estimates of these uncertain parameters can be obtained by solving inverse problems. In this study, an efficient data assimilation method, the iterative local updating ensemble smoother (ILUES), is employed for the joint estimation of hydraulic parameters, biochemical parameters and contaminant source characteristics in the sequential biodegradation process of tetrachloroethene (PCE). In the framework of the ILUES algorithm, parameter estimation is realized by updating local ensemble with the iterative ensemble smoother (IES). To better explore the parameter space, the original ILUES algorithm is modified by determining the local ensemble partly with a linear ranking selection scheme. Numerical case studies based on the sequential biodegradation of PCE are then used to evaluate the performance of the ILUES algorithm. The results show that the ILUES algorithm is able to achieve an accurate joint estimation of related model parameters in the reactive transport model.


2019 ◽  
Vol 98 ◽  
pp. 04007
Author(s):  
Dirk Kirste ◽  
Julie K. Pearce ◽  
Sue D. Golding ◽  
Grant K.W. Dawson

The geologic storage of CO2 carries both physical and chemical risks to the environment. In order to reduce those risks, it is necessary to provide predictive capabilities for impacts so that strategies can be developed to monitor, identify and mitigate potential problems. One area of concern is related to water quality both in the reservoir and in overlying aquifers. In this study we report the critical steps required to develop chemically constrained reactive transport models (RTM) that can be used to address risk assessment associated with water quality. The data required to produce the RTM includes identifying the individual hydrostratigraphic units and defining the mineral and chemical composition to sufficient detail for the modelling. This includes detailed mineralogy, bulk chemical composition, reactive mineral phase chemical composition and the identification of the occurrence and mechanisms of mobilisation of any trace elements of interest. Once the required detail is achieved the next step involves conducting experiments to determine the evolution of water chemistry as reaction proceeds preferably under varying elevated CO2 fugacities with and without impurities. Geochemical modelling of the experiments is then used for characterising the reaction pathways of the different hydrostratigraphic units. The resultant geochemical model inputs can then be used to develop the chemical components of a reactive transport model.


2005 ◽  
Vol 42 (4) ◽  
pp. 1116-1132 ◽  
Author(s):  
A J Cooke ◽  
R K Rowe ◽  
B E Rittmann

A numerical, multiple-species, reactive transport model, coupled to models of kinetic biodegradation, precipitation, and particle attachment and detachment for predicting landfill leachate-induced clogging in porous media for one-dimensional flow systems, is described. The finite-element method is used for transport modelling, with reactions incorporated into point-source or sink terms. The species modelled include three volatile fatty acids, active and inert suspended biomass, dissolved calcium, and inorganic particles. The clog matter consists of active biofilm, inert biofilm, and inorganic solids. A biofilm model is used to simulate the growth and decay of active biomass and removal of substrate. Precipitate accumulation and calcium removal are simulated by a model of calcium carbonate precipitation. Interphase movement between clog matter and fluid includes the processes of attachment and detachment. A geometric representation of the porous media allows porosity and specific surface to be estimated from the thickness of the accumulated clog matter. The porosity of the media can thus change spatially and temporally. The behaviour of the model is demonstrated with a hypothetical example.Key words: clogging, landfills, leachate collection systems, modelling, biofilms, mineral precipitation.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3109
Author(s):  
Angela Isabel Pedregal Montes ◽  
Janith Abeywickrama ◽  
Nils Hoth ◽  
Marlies Grimmer ◽  
Carsten Drebenstedt

The modeling of ion exchange processes could significantly enhance their applicability in mine water treatment, as the modern synthetic resins give unique advantages for the removal of metals. Accurate modeling improves the predictability of the process, minimizing the time and costs involved in laboratory column testing. However, to date, the development and boundary conditions of such ion exchange systems with complex mine waters are rarely studied and poorly understood. A representative ion exchange model requires the definition of accurate parameters and coefficients. Therefore, theoretical coefficients estimated from natural exchange materials that are available in geochemical databases often need to be modified. A 1D reactive transport model was developed based on PhreeqC code, using three case scenarios of synthetic mine waters and varying the operating conditions. The first approach was defined with default exchange coefficients from the phreeqc.dat database to identify and study the main parameters and coefficients that govern the model: cation exchange capacity, exchange coefficients, and activity coefficients. Then, these values were adjusted through iterative calibration until a good approximation between experimental and simulation breakthrough curves was achieved. This study proposes a suitable methodology and challenges for modeling the removal of metals from complex mine waters using synthetic ion exchange resins.


2021 ◽  
Author(s):  
Anna Störiko ◽  
Holger Pagel ◽  
Adrian Mellage ◽  
Olaf A. Cirpka

<p>Biomolecular quantities like gene, transcript or enzyme concentrations related to a specific reaction promise to provide information about the turnover of nutrients or contaminants in the environment. Particularly transcript-to-gene ratios have been suggested to provide a measure for reaction rates but a relationship with rates currently lacks validation.<br>We applied an enzyme-based reactive transport model for denitrification and aerobic respiration at the river-groundwater interface to simulate the temporal and spatial patterns of transcripts, enzymes and biomass under diurnal dissolved oxygen fluctuations.<br>Our analysis showed that transcript concentrations of denitrification genes exhibit considerable diurnal fluctuations, whereas enzyme concentrations and biomass are stable over time. The daily fluctuations in denitrification rates yielded a poor correlation between rates and transcript and enzyme concentrations. Daily averaged reaction rates, however, show a close-to-linear relationship with enzyme concentrations and mean transcript concentrations.<br>Our findings suggest that, under dynamic environmental conditions, single-event sampling may result in the misinterpretation of biomelucular quantities as these relate to reaction rates. A better representation of rates can be achieved via sampling that captures the temporal variability of a particular system.</p>


2017 ◽  
pp. 44-54
Author(s):  
Zenaida Gonzaga ◽  
Warren Obeda ◽  
Ana Linda Gorme ◽  
Jessie Rom ◽  
Oscar Abrantes ◽  
...  

Okra or Lady’s finger, botanically known as Abelmoschus esculentus (L.) Moench, is a tropical and sub-tropical indigenous vegetable crop commonly grown for its fibrous, slimy, and nutritious fruits and consumed by all classes of population. It has also several medicinal and economic values. Despite its many uses and potential value, its importance is under estimated, under-utilized, and considered a minor crop and little attention was paid to its improvement. The study was conducted to evaluate the effects of different planting densities and mulching materials on the growth and yield of okra grown in slightly sloping area in the marginal uplands in Sta. Rita, Samar, Philippines. A split-plot experiment was set up with planting density as main plot and the different mulching materials as the sub-plot which were: unmulched or bare soil, rice straw, rice hull, hagonoy and plastic mulch. Planting density did not significantly affect the growth and yield of okra. Regardless ofthe mulching materials used, mulched plants were taller and yielded higher compared to unmulched plants. Moreover, the use of plastic mulch resulted to the highest total fruit yield. The results indicate the potential of mulching in increasing yield and thus profitability of okra production under marginal upland conditions.


Sign in / Sign up

Export Citation Format

Share Document