Removal of chromium(VI) from aqueous solutions using zeolites modified with HDTMA and ODTMA surfactants

Clay Minerals ◽  
2015 ◽  
Vol 50 (1) ◽  
pp. 103-115 ◽  
Author(s):  
Barbara Szala ◽  
Tomasz Bajda ◽  
Anna Jeleń

AbstractThe removal of Cr(VI) from aqueous solutions under various conditions was investigated using a natural clinoptilolite and a synthetic zeolite derived from fly-ash (Na-P1), modified either with hexadecyltrimethylammonium bromide (HDTMA) or octadecyltrimethylammonium bromide (ODTMA). The study was focused mainly on the impact of the properties of the zeolite on the sorption capacity, the sorption mechanism, the influence of pH and the durability of the immobilization. The zeolites were modified with HDTMA and ODTMA surfactants up to 100% and 120% of their external cation exchange capacity. Batch and column studies were conducted to evaluate the influence of pH and the initial Cr(VI) concentration on their efficiencies for removing chromates. The organo-zeolites show a significant ability to remove Cr(VI) from aqueous solutions. The amount of Cr(VI) removed by organo-clinoptilolite and organo-zeolite Na-P1 is greater at low pH values, whereas the sorption efficiency decreased with increasing pH. Sorption of Cr(VI) was more efficient with the HDTMA-modified organo-clinoptilolite (150 mmol Cr(VI)/kg) than the ODTMA-modified clinoptilolite (132 mmol Cr(VI)/kg). The maximum sorption capacity was obtained with the 1.2 × ECEC ODTMA-modified clinoptilolite (237 mmol Cr(VI)/kg). The organozeolites Na-P1 adsorbed Cr(VI) from aqueous solutions more effectively and were much more durable than the organo-clinoptilolites.

Author(s):  
Abdelhamid Addala ◽  
Moussa Boudiaf ◽  
Maria Elektorowicz ◽  
Embarek Bentouhami ◽  
Yacine Bengeurba

Abstract Under varied conditions, the IRC 718 ion-exchange resin is used to extract chromium (VI) ions from aqueous solutions. On chromium (VI) removal effectiveness, the effects of adsorption dosage, contact time, beginning metal concentration, and pH were examined. The batch ion exchange process reached equilibrium after around 90 minutes of interaction. With an initial chromium (VI) concentration of 0.5 mg/dm3, the pH-dependent ion-exchange mechanism revealed maximal removal in the pH 2.0–10 range . The adsorption mechanism occurs between Cr(VI) determined as the electron acceptor, and IRC 718 determined as the electron donor. The equilibrium ion-exchange potential and ion transfer quantities for Amberlite IRC 718 were calculated using the Langmuir adsorption isotherm model. The overall ion exchange capacity of the resin was determined to be 187.72 mg of chromium (VI)/g of resin at an ideal pH of 6.0.


2012 ◽  
Vol 573-574 ◽  
pp. 150-154
Author(s):  
Yun Bo Zang ◽  
Nai Ying Wu

In this study, removal of copper ions from aqueous solutions by synthetic Mg-Al-HTlc was investigated as a function of contact time, EDTA and addition sequences at room temperature. It is found that HTlc could reduced copper ions concentration effectively. The kinetics closely fit pseudo-second order kinetics with necessary time 9 h to reach equilibrium. The sorption process followed langmuir model. The maximum sorption capacity calculated was found to be 39.4 mg/g. The presence of EDTA and addition sequences could affect sorption of Cu(II) onto HTlc.


2018 ◽  
Vol 28 ◽  
pp. 01029 ◽  
Author(s):  
Magdalena Pająk ◽  
Agnieszka Dzieniszewska ◽  
Joanna Kyzioł-Komosińska ◽  
Michał Chrobok

The aim of the study was to determine the potential for the application of dust from steel plant as an effective sorbent for removing Cr(III) and Cr(VI) in the form of simple and complex ions – Acid Blue 193 dye from aqueous solutions. Three isotherms models were used to interpret the experimental results namely: Langmuir, Freundlich, and Dubinin–Radushkevich. Estimated equations parameters allowed to determine the binding mechanism. Based on laboratory studies it was found that the dust was characterized by high sorption capacities for Cr ions and dye from the aqueous solution. The sorption capacity of the dust for Cr(III) and Cr(VI) ions depended on the degree of oxidation, pH of solution and kind of anion and changed in series: Cr(III)-Cl pH=5.0> Cr(III)-SO4 pH=5.0> Cr(III)-Cl pH=3.0> Cr(III)-SO4 pH=3.0> Cr(VI) pH=5.0> Cr(VI) pH=3.0. Dust was also characterized by a high maximum sorption capacity of dye at a range of 38.2 – 91.7 mg/g, depending on the dose of dust. Based on the study it was found that dust from a steel plant, containing iron oxides, can be used as low-cost and effective sorbent to remove pollutions containing chromium ions, especially from acidic wastewater.


Author(s):  
Tomasz Jóźwiak ◽  
Urszula Filipkowska ◽  
Paula Bugajska ◽  
Małgorzata Kuczajowska-Zadrożna ◽  
Artur Mielcarek

The influence of the degree of deacetylation of chitosan from the range of DD = 75–90% on the effectiveness of sorption of nitrates from aqueous solutions was investigated. The scope of the research included: determining the effect of pH on the effectiveness of N-NO3 binding on chitosan sorbents and determining the sorption capacity of chitosan sorbents with different degrees of deacetylation after 5, 15, 30 and 60 minutes. The effectiveness of sorption of nitrates on chitosan sorbents increased in the series DD=75% < DD=85% < DD=90%. Regardless of the degree of deacetylation, the sorption effectiveness of nitrates on chitosan was the highest at pH 4. The amount of nitrate-related sorbents was the highest after 30 min of sorption. A process time which was too long resulted in desorption of nitrates. The maximum sorption capacity for chitosan with the degree of deacetylation DD = 75, 85 and 90% was 0.59 mg N-NO3/g, 0.60 mg N-NO3/g and 0.87 mg N-NO3/g, respectively.


2015 ◽  
Vol 71 (12) ◽  
pp. 1875-1883 ◽  
Author(s):  
HyunJu Park ◽  
Duc Canh Nguyen ◽  
Choo-Ki Na

In this study, we investigated the removal of phosphate from aqueous solutions using (vinylbenzyl)-trimethylammonium chloride (VBTAC) grafted onto poly(ethylene terephthalate) (PET) fibers (PET-g-VBTAC). Batch-mode experiments were conducted using various contact times, initial phosphate concentrations, temperatures, pH values, and competing anions, to understand phosphate sorption onto PET-g-VBTAC. The phosphate sorption capacity of PET-g-VBTAC increased with increasing solution pH and was highest near pH 7. The equilibrium data fitted the Langmuir isotherm model well. The maximum sorption capacity (qm) of PET-g-VBTAC for phosphate was 55.6–56.0 mg/g at 25–45 °C. The sorption process followed a pseudo-second-order kinetic model. The obtained values of the mean free energy indicated that sorption of phosphate on PET-g-VBTAC occurs via ion exchange. Thermodynamic parameters, enthalpy change, entropy change, and Gibb's free energy, confirmed that phosphate sorption was spontaneous and endothermic. The adverse effects of competing anions on phosphate removal by PET-g-VBTAC were insignificant. These results demonstrate that PET-g-VBTAC effectively removes phosphate from aqueous solutions by ion exchange.


2018 ◽  
Vol 107 (1) ◽  
pp. 67-82 ◽  
Author(s):  
Reda R. Sheha ◽  
Saber I. Moussa ◽  
Mohamed A. Attia ◽  
Sedeeq A. Sadeek ◽  
Hanan H. Someda

Abstract Multi-walled carbon nanotubes/strontium hydroxyapatite (MWCNT/SH) composite was synthesized, where CNTs were applied to improve the properties of HAP and increase the reinforcement of the composite. The composite CNTs/Sr-HAP and its precursor Sr-HAP were successfully applied in removal of Co(II) and Eu(III) ions from aqueous solutions. Sorption of Co(II) and Eu(III) onto the synthesized sorbents was investigated as a function of contact time and pH. The synthesized sorbents highly removed the studied radionuclides from their aqueous solutions with necessary time of 6 h to reach equilibrium. The maximum sorption capacity was 33.31 and 48.93 mg g−1 for Co(II) sorption onto Sr-HAP and CNTs/Sr-HAP composite at pH 4.5, while it was 115.74 and 127.11 mg g−1 for sorption of Eu(III) onto Sr-HAP and CNTs/Sr-HAP composite at pH 2.5, respectively. Desorption of Co(II) and Eu(III) from loaded samples was studied using various eluents and maximum recovery was obtained using FeCl3 and HCl solutions. Co(II) was completely separated from Eu(III) by a ratio of 85.1 % using Cd(NO3)2 as an eluent in CNTs/Sr-HAP composite packed column.


2009 ◽  
Vol 63 (3) ◽  
pp. 269-273 ◽  
Author(s):  
Zvjezdana Sandic ◽  
Aleksandra Nastasovic

The removal of heavy metals from hydro-metallurgical and other industries' wastewaters, their safe storage and possible recovery from waste- water streams is one of the greater ecological problems of modern society. Conventional methods, like precipitation, adsorption and biosorption, electrowinning, membrane separation, solvent extraction and ion exchange are often ineffective, expensive and can generate secondary pollution. On the other hand, chelating polymers, consisting of crosslinked copolymers as a solid support and functional group (ligand), are capable of selectively loading different metal ions from aqueous solutions. In the relatively simple process, the chelating copolymer is contacted with the contaminated solution, loaded with metal ions, and stripped with the appropriate eluent. Important properties of chelating polymers are high capacity, high selectivity and fast kinetics combined with mechanical stability and chemical inertness. Macroporous hydrophilic copolymers of glycidyl methacrylate and ethylene glycol dimethacrylate modified by different amines show outstanding efficiency and selectivity for the sorption of precious and heavy metals from aqueous solutions. In this study poly(GMA-co-EGDMA) copolymers were synthesized with different porosity parameters and functionalized in reactions with ethylene diamine (EDA), diethylene triamine (DETA) and triethylene tetramine (TETA). Under non-competitive conditions, in batch experiments at room temperature, the rate of sorption of Cu(II) ions from aqueous solutions and the influence of pH on it was determined for four samples of amino-functionalized poly(GMA-co-EGDMA). The sorption of Cu(II) for both amino-functionalized samples was found to be very rapid. The sorption half time, t1/2, defined as the time required to reach 50% of the total sorption capacity, was between 1 and 2 min. The maximum sorption capacity for copper (2.80 mmol/g) was obtained on SGE-10/12-deta sample. The sorption capacity of Cu(II) ions increases with increasing pH and has maximum at pH ~5. In the experimental pH range, the maximum sorption capacity of Cu(II) ions again is reached on SGE-10/12-deta. By comparing literature data and obtained results it is possible to conclude that amino-functionalized macroporous copolymers based on glycidyl methacrylate are efficient for sorption of Cu(II) ions from aqueous solutions and sorption capacity for copper mostly depends on type of amine with which the basic copolymer is functionalized.


Author(s):  
Paula Bugajska ◽  
Urszula Filipkowska ◽  
Tomasz Jóźwiak ◽  
Małgorzata Kuczajowska-Zadrożna

The article presents the effectiveness of orthophosphate sorption from aqueous solutions depending on the deacetylation degree of chitosan flakes. The first stage of the research was to determine the pH value at which the sorption process was the most effective (from the pH range 2–11). In the second stage, research was carried out to determine the maximum sorption capacities of chitosan with deacetylation degrees of 75%, 85% and 90% in relation to PO43-. The highest effectiveness of orthophosphate removal on chitosan, regardless of its deacetylation degree, was obtained at pH 4. At pH 2 and 3, the chitosan flakes dissolved. This study showed that the sorption effectiveness of phosphorus compounds depends on the deacetylation degree of chitosan. Along with the increase in deacetylation degree, the sorption capacity of chitosan also increases in relation to orthophosphates. It is related to the higher number of amino groups in the structure of chitosan, which are responsible for the sorption of pollutants in the form of anions. The maximum sorption capacity of chitosan-DD = 75% in relation to biogen was 5.13 mg/g, chitosan-DD = 85% was 5.65 mg/g, and chitosan-DD = 90% was 5.91 mg/g. After 60 minutes, the desorption process had begun and was most likely caused by an increase in the pH of the solution. Due to chitosan's ability to neutralise the sample and the associated risk of desorption, the time of sorbent contact with sewage cannot be longer than 60 minutes.


2015 ◽  
Vol 14 (2) ◽  
pp. 212-227 ◽  
Author(s):  
Denisa Partelová ◽  
Anna Šuňovská ◽  
Jana Marešová ◽  
Miroslav Horník ◽  
Martin Pipíška ◽  
...  

Abstract Agricultural wastes can be used as an alternative to the existing sorbents for the removal of metals or synthetic dyes from contaminated liquids. In this work, the fine powdered biomass of the hop (Humulus lupulus L.) variety Osvald's clone 72 and variety Bohemie as a sorbent for the removal of Cd from aqueous solutions of CdCl2 spiked with radionuclide 109Cd and synthetic dyes thioflavine T (ThT) or methylene blue (MB) from single dye solutions under conditions of batch systems was used. The maximum sorption capacity Q = 264 µmol Cd/g (d.w.) was found in the case of the leaf biomass of hop (H. lupulus L.) variety Osvald's clone 72 at the initial concentration of CdCl2 10,000 µmol/dm3, whereby the sorption capacity decreased in the order Qleaves : Qstems : Qroots = 1.0 : 0.8 : 0.7. The sorbed amount of Cd was removed from the hop biomass with the following increasing desorption efficiency of the extraction reagents: deionised H2O << 0.1 mol/dm3 HCl ≤ 0.1 mol/dm3 EDTA-Na2. Similarly as in the case of Cd sorption, the kinetics of ThT and MB sorption by the leaf biomass of the hop (H. lupulus L.) variety Bohemie were also showed as two-phase processes. The maximum sorption of ThT approx. Q = 19 mg/g (d.w.) and MB approx. Q = 70 mg/g (d.w.) were found within the range of the initial values of pH 4 – 7. The sorption of both dyes by the leaf biomass from single dye solutions decreased with increasing biomass concentration and on the other hand increased with increasing the initial concentrations of ThT or MB. The process of ThT and MB sorption was better described by the Langmuir model than the Freundlich model of sorption isotherm. From the obtained values of Qmax, it was found that in the case of MB the dried leaf biomass showed more than 2-times higher sorption capacity (Qmax = 184 mg/g; d.w.) in comparison with the value predicted for ThT. Obtained results suggest that dried plant biomass of hop (H. lupulus L.) as agricultural by-products can be used as a potential sorbent for both types of studied contaminants.


Sign in / Sign up

Export Citation Format

Share Document