scholarly journals Functionalized macroporous copolymer of glycidyl methacrylate: The type of ligand and porosity parameters influence on Cu(II) ion sorption from aqueous solutions

2009 ◽  
Vol 63 (3) ◽  
pp. 269-273 ◽  
Author(s):  
Zvjezdana Sandic ◽  
Aleksandra Nastasovic

The removal of heavy metals from hydro-metallurgical and other industries' wastewaters, their safe storage and possible recovery from waste- water streams is one of the greater ecological problems of modern society. Conventional methods, like precipitation, adsorption and biosorption, electrowinning, membrane separation, solvent extraction and ion exchange are often ineffective, expensive and can generate secondary pollution. On the other hand, chelating polymers, consisting of crosslinked copolymers as a solid support and functional group (ligand), are capable of selectively loading different metal ions from aqueous solutions. In the relatively simple process, the chelating copolymer is contacted with the contaminated solution, loaded with metal ions, and stripped with the appropriate eluent. Important properties of chelating polymers are high capacity, high selectivity and fast kinetics combined with mechanical stability and chemical inertness. Macroporous hydrophilic copolymers of glycidyl methacrylate and ethylene glycol dimethacrylate modified by different amines show outstanding efficiency and selectivity for the sorption of precious and heavy metals from aqueous solutions. In this study poly(GMA-co-EGDMA) copolymers were synthesized with different porosity parameters and functionalized in reactions with ethylene diamine (EDA), diethylene triamine (DETA) and triethylene tetramine (TETA). Under non-competitive conditions, in batch experiments at room temperature, the rate of sorption of Cu(II) ions from aqueous solutions and the influence of pH on it was determined for four samples of amino-functionalized poly(GMA-co-EGDMA). The sorption of Cu(II) for both amino-functionalized samples was found to be very rapid. The sorption half time, t1/2, defined as the time required to reach 50% of the total sorption capacity, was between 1 and 2 min. The maximum sorption capacity for copper (2.80 mmol/g) was obtained on SGE-10/12-deta sample. The sorption capacity of Cu(II) ions increases with increasing pH and has maximum at pH ~5. In the experimental pH range, the maximum sorption capacity of Cu(II) ions again is reached on SGE-10/12-deta. By comparing literature data and obtained results it is possible to conclude that amino-functionalized macroporous copolymers based on glycidyl methacrylate are efficient for sorption of Cu(II) ions from aqueous solutions and sorption capacity for copper mostly depends on type of amine with which the basic copolymer is functionalized.

Soil Research ◽  
2007 ◽  
Vol 45 (8) ◽  
pp. 618 ◽  
Author(s):  
Wanting Ling ◽  
Qing Shen ◽  
Yanzheng Gao ◽  
Xiaohong Gu ◽  
Zhipeng Yang

A decrease in release and availability of heavy metals in soil has been of worldwide interest in recent years. Bentonite is a type of expandable montmorillonite clay, and has strong sorption for heavy metals. In this work, the control of amended bentonite on the release of copper (Cu2+) from spiked soils was investigated using a batch equilibrium technique. Sorption of Cu by bentonite was pH-dependent, and could be well described using the Langmiur model. Maximum sorption capacity of the bentonite used in this study was 5.4 mg/g, which was much greater than soils reported in the literature. The extent of Cu2+ release from spiked soils was correlated with slurry concentrations, pH, and soil ageing process. In all cases, the amendment of bentonite was observed to effectively decrease the release of Cu2+ from soils. The apparent aqueous concentrations of Cu2+ released from soils devoid of bentonite treatment were 113–1160% higher than those from the soils amended with bentonite. Moreover, the magnitude of Cu2+ release decreased with increasing amount of bentonite added to soils. The bentonite added was more effective in retaining Cu2+ in sorbents for aged contaminated soils. Such enhanced retention resulting from the presence of bentonite was observed within a wide pH range from 2.5 to 7.0. Bentonite, as one of the most abundant minerals in soils, is regarded to improve the soil overall quality. The results obtained from this work provide useful information on utilisation of bentonite to control the release of heavy metals from contaminated soils.


2012 ◽  
Vol 573-574 ◽  
pp. 150-154
Author(s):  
Yun Bo Zang ◽  
Nai Ying Wu

In this study, removal of copper ions from aqueous solutions by synthetic Mg-Al-HTlc was investigated as a function of contact time, EDTA and addition sequences at room temperature. It is found that HTlc could reduced copper ions concentration effectively. The kinetics closely fit pseudo-second order kinetics with necessary time 9 h to reach equilibrium. The sorption process followed langmuir model. The maximum sorption capacity calculated was found to be 39.4 mg/g. The presence of EDTA and addition sequences could affect sorption of Cu(II) onto HTlc.


2013 ◽  
Vol 795 ◽  
pp. 266-271 ◽  
Author(s):  
Norzila Othman ◽  
Syazwani Mohd Asharuddin

Cucumis melo rind was evaluated as a new biosorbent for the removal of Fe (II) and Mn (II) from synthetic groundwater solution. The maximum sorption capacity of Fe (II) and Mn (II) was found to be 4.98 mg/g and 1.37 mg/g respectively. Sorption was most efficient at pH 7 and 6.5 for Fe (II) and Mn (II) respectively. The biosorption of both metals increased as the quantity of biosorbent increased. The increase in initial metal concentration was associated with steep increase in biosorption at lower concentrations and progressively reaching towards plateau at higher metal concentration. FTIR demonstrated that hydroxyl and carboxyl groups were involved in the biosorption of the metal ions. The study points to the potential of new use of Cucumis melo rind as an effective sorbent for the removal of Fe (II) and Mn (II) from aqueous solution.


Author(s):  
Tomasz Jóźwiak ◽  
Urszula Filipkowska ◽  
Paula Bugajska ◽  
Małgorzata Kuczajowska-Zadrożna ◽  
Artur Mielcarek

The influence of the degree of deacetylation of chitosan from the range of DD = 75–90% on the effectiveness of sorption of nitrates from aqueous solutions was investigated. The scope of the research included: determining the effect of pH on the effectiveness of N-NO3 binding on chitosan sorbents and determining the sorption capacity of chitosan sorbents with different degrees of deacetylation after 5, 15, 30 and 60 minutes. The effectiveness of sorption of nitrates on chitosan sorbents increased in the series DD=75% < DD=85% < DD=90%. Regardless of the degree of deacetylation, the sorption effectiveness of nitrates on chitosan was the highest at pH 4. The amount of nitrate-related sorbents was the highest after 30 min of sorption. A process time which was too long resulted in desorption of nitrates. The maximum sorption capacity for chitosan with the degree of deacetylation DD = 75, 85 and 90% was 0.59 mg N-NO3/g, 0.60 mg N-NO3/g and 0.87 mg N-NO3/g, respectively.


2018 ◽  
Vol 107 (1) ◽  
pp. 67-82 ◽  
Author(s):  
Reda R. Sheha ◽  
Saber I. Moussa ◽  
Mohamed A. Attia ◽  
Sedeeq A. Sadeek ◽  
Hanan H. Someda

Abstract Multi-walled carbon nanotubes/strontium hydroxyapatite (MWCNT/SH) composite was synthesized, where CNTs were applied to improve the properties of HAP and increase the reinforcement of the composite. The composite CNTs/Sr-HAP and its precursor Sr-HAP were successfully applied in removal of Co(II) and Eu(III) ions from aqueous solutions. Sorption of Co(II) and Eu(III) onto the synthesized sorbents was investigated as a function of contact time and pH. The synthesized sorbents highly removed the studied radionuclides from their aqueous solutions with necessary time of 6 h to reach equilibrium. The maximum sorption capacity was 33.31 and 48.93 mg g−1 for Co(II) sorption onto Sr-HAP and CNTs/Sr-HAP composite at pH 4.5, while it was 115.74 and 127.11 mg g−1 for sorption of Eu(III) onto Sr-HAP and CNTs/Sr-HAP composite at pH 2.5, respectively. Desorption of Co(II) and Eu(III) from loaded samples was studied using various eluents and maximum recovery was obtained using FeCl3 and HCl solutions. Co(II) was completely separated from Eu(III) by a ratio of 85.1 % using Cd(NO3)2 as an eluent in CNTs/Sr-HAP composite packed column.


Author(s):  
Paula Bugajska ◽  
Urszula Filipkowska ◽  
Tomasz Jóźwiak ◽  
Małgorzata Kuczajowska-Zadrożna

The article presents the effectiveness of orthophosphate sorption from aqueous solutions depending on the deacetylation degree of chitosan flakes. The first stage of the research was to determine the pH value at which the sorption process was the most effective (from the pH range 2–11). In the second stage, research was carried out to determine the maximum sorption capacities of chitosan with deacetylation degrees of 75%, 85% and 90% in relation to PO43-. The highest effectiveness of orthophosphate removal on chitosan, regardless of its deacetylation degree, was obtained at pH 4. At pH 2 and 3, the chitosan flakes dissolved. This study showed that the sorption effectiveness of phosphorus compounds depends on the deacetylation degree of chitosan. Along with the increase in deacetylation degree, the sorption capacity of chitosan also increases in relation to orthophosphates. It is related to the higher number of amino groups in the structure of chitosan, which are responsible for the sorption of pollutants in the form of anions. The maximum sorption capacity of chitosan-DD = 75% in relation to biogen was 5.13 mg/g, chitosan-DD = 85% was 5.65 mg/g, and chitosan-DD = 90% was 5.91 mg/g. After 60 minutes, the desorption process had begun and was most likely caused by an increase in the pH of the solution. Due to chitosan's ability to neutralise the sample and the associated risk of desorption, the time of sorbent contact with sewage cannot be longer than 60 minutes.


2015 ◽  
Vol 14 (2) ◽  
pp. 212-227 ◽  
Author(s):  
Denisa Partelová ◽  
Anna Šuňovská ◽  
Jana Marešová ◽  
Miroslav Horník ◽  
Martin Pipíška ◽  
...  

Abstract Agricultural wastes can be used as an alternative to the existing sorbents for the removal of metals or synthetic dyes from contaminated liquids. In this work, the fine powdered biomass of the hop (Humulus lupulus L.) variety Osvald's clone 72 and variety Bohemie as a sorbent for the removal of Cd from aqueous solutions of CdCl2 spiked with radionuclide 109Cd and synthetic dyes thioflavine T (ThT) or methylene blue (MB) from single dye solutions under conditions of batch systems was used. The maximum sorption capacity Q = 264 µmol Cd/g (d.w.) was found in the case of the leaf biomass of hop (H. lupulus L.) variety Osvald's clone 72 at the initial concentration of CdCl2 10,000 µmol/dm3, whereby the sorption capacity decreased in the order Qleaves : Qstems : Qroots = 1.0 : 0.8 : 0.7. The sorbed amount of Cd was removed from the hop biomass with the following increasing desorption efficiency of the extraction reagents: deionised H2O << 0.1 mol/dm3 HCl ≤ 0.1 mol/dm3 EDTA-Na2. Similarly as in the case of Cd sorption, the kinetics of ThT and MB sorption by the leaf biomass of the hop (H. lupulus L.) variety Bohemie were also showed as two-phase processes. The maximum sorption of ThT approx. Q = 19 mg/g (d.w.) and MB approx. Q = 70 mg/g (d.w.) were found within the range of the initial values of pH 4 – 7. The sorption of both dyes by the leaf biomass from single dye solutions decreased with increasing biomass concentration and on the other hand increased with increasing the initial concentrations of ThT or MB. The process of ThT and MB sorption was better described by the Langmuir model than the Freundlich model of sorption isotherm. From the obtained values of Qmax, it was found that in the case of MB the dried leaf biomass showed more than 2-times higher sorption capacity (Qmax = 184 mg/g; d.w.) in comparison with the value predicted for ThT. Obtained results suggest that dried plant biomass of hop (H. lupulus L.) as agricultural by-products can be used as a potential sorbent for both types of studied contaminants.


2015 ◽  
Vol 60 (3) ◽  
pp. 677-686
Author(s):  
Agnieszka Bożęcka ◽  
Stanisława Sanak-Rydlewska

Abstract This article presents the results of research on the Cd2+ ions sorption from model aqueous solutions on sunflower hulls, walnut shells and plum stones. The effect of various factors, such as mass of the natural sorbent, the pH, the time and the temperature was studied. The process of Cd2+ ions sorption on studied sorbents was described by the Langmuir model. The best sorption capacity has been achieved for sunflower hulls. The maximum sorption capacity for this material was 19.93 mg/g.


Author(s):  
A. Safonov ◽  
N. Andriushchenko ◽  
N. Popova ◽  
K. Boldyrev

Проведен анализ сорбционных характеристик природных материалов (вермикулит, керамзит, перлит, цеолит Трейд ) при очистке кадмий- и хромсодержащих сточных вод с высокой нагрузкой по ХПК. Установлено, что цеолит обладает максимальными сорбционными характеристиками для Cd и Cr и наименьшим биологическим обрастанием. При использовании вермикулита и керамзита или смесей на их основе можно ожидать увеличения сорбционной емкости для Cd и Сr при микробном обрастании, неизбежно происходящем в условиях контакта с водами, загрязненными органическими соединениями и биогенами. При этом биообрастание может повысить иммобилизационную способность материалов для редоксзависимых металлов за счет ферментативных ресурсов бактериальных клеток, использующих их в качестве акцепторов электронов. Эффект микробного обрастания разнонаправленно изменял параметры материалов: для Cr в большинстве случаев уменьшение и для Cd значительное увеличение. При этом дополнительным эффектом иммобилизации Cr является его биологическое восстановление биопленками. Варьируя состав сорбционного материала, можно подбирать смеси, оптимально подходящие для очистки вод инфильтратов с полигонов твердых бытовых отходов с высокой нагрузкой по ХПК и биогенным элементам как при использовании in situ, так и в системах на поверхности.The analysis of the sorption characteristics of natural materials (vermiculite, expanded clay, perlite, Trade zeolite) during the purification of cadmium and chromium-containing leachate with a high COD load was carried out. It was determined that zeolite had the maximum sorption capacity for Cd and Cr and the lowest biological fouling. When using vermiculite and expanded clay or mixtures on their basis, one can expect an increase in the sorption capacity for Cd and Cr during microbial fouling that inevitably occurs during contacting with water polluted with organic compounds and nutrients. In this case biofouling can increase the immobilization properties of materials for redox-dependent metals due to the enzymatic resources of bacterial cells that use them as electron acceptors. The effect of microbial fouling changed the parameters of materials in different directions: for Cr, in most cases, downward, and for Cd, significantly upward. Moreover, chromium biological recovery by biofilms is an additional effect of immobilization. Varying the composition of the sorption material provides for selecting mixtures that are optimally suitable for the purification of leachates from solid waste landfills with high COD and nutrients load, both when used in situ and in surface systems.


2021 ◽  
Vol 13 (3) ◽  
pp. 1502
Author(s):  
Maria Xanthopoulou ◽  
Dimitrios Giliopoulos ◽  
Nikolaos Tzollas ◽  
Konstantinos S. Triantafyllidis ◽  
Margaritis Kostoglou ◽  
...  

In water and wastewater, phosphate anions are considered critical contaminants because they cause algae blooms and eutrophication. The present work aims at studying the removal of phosphate anions from aqueous solutions using silica particles functionalized with polyethylenimine. The parameters affecting the adsorption process such as pH, initial concentration, adsorbent dose, and the presence of competitive anions, such as carbonate, nitrate, sulfate and chromate ions, were studied. Equilibrium studies were carried out to determine their sorption capacity and the rate of phosphate ions uptake. The adsorption isotherm data fitted well with the Langmuir and Sips model. The maximum sorption capacity was 41.1 mg/g at pH 5, which decreased slightly at pH 7. The efficiency of phosphate removal adsorption increased at lower pH values and by increasing the adsorbent dose. The maximum phosphate removal was 80% for pH 5 and decreased to 75% for pH 6, to 73% for pH 7 and to 70% for pH 8, for initial phosphate concentration at about 1 mg/L and for a dose of adsorbent 100 mg/L. The removal rate was increased with the increase of the adsorbent dose. For example, for initial phosphate concentration of 4 mg/L the removal rate increased from 40% to 80% by increasing the dose from 0.1 to 2.0 g/L at pH 7. The competitive anions adversely affected phosphate removal. Though they were also found to be removed to a certain extent. Their co-removal provided an adsorbent which might be very useful for treating waters with low-level multiple contaminant occurrence in natural or engineered aquatic systems.


Sign in / Sign up

Export Citation Format

Share Document