Low-grade evolution of clay minerals and organic matter in fault zones of the Hikurangi prism (New Zealand)

Clay Minerals ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 579-602 ◽  
Author(s):  
Tatiana Maison ◽  
Sébastien Potel ◽  
Pierre Malié ◽  
Rafael Ferreiro Mählmann ◽  
Frank Chanier ◽  
...  

ABSTRACTClay minerals and organic matter occur frequently in fault zones. Their structural characteristics and their textural evolution are driven by several formation processes: (1) reaction by metasomatism from circulating fluids; (2)in situevolution by diagenesis; and (3) neoformation due to deformation catalysis. Clay-mineral chemistry and precipitated solid organic matter may be used as indicators of fluid circulation in fault zones and to determine the maximum temperatures in these zones. In the present study, clay-mineral and organic-matter analyses of two major fault zones – the Adams-Tinui and Whakataki faults, Wairarapa, North Island, New Zealand – were investigated. The two faults analysed correspond to the soles of large imbricated thrust sheets formed during the onset of subduction beneath the North Island of New Zealand. The mineralogy of both fault zones is composed mainly of quartz, feldspars, calcite, chabazite and clay minerals such as illite-muscovite, kaolinite, chlorite and mixed-layer minerals such as chlorite-smectite and illite-smectite. The diagenesis and very-low-grade metamorphism of the sedimentary rock is determined by gradual changes of clay mineral ‘crystallinity’ (illite, chlorite, kaolinite), the use of a chlorite geothermometer and the reflectance of organic matter. It is concluded here that: (1) the established thermal grade is diagenesis; (2) tectonic strains affect the clay mineral ‘crystallinity’ in the fault zone; (3) there is a strong correlation between temperature determined by chlorite geothermometry and organic-matter reflectance; and (4) the duration and depth of burial as well as the pore-fluid chemistry are important factors affecting clay-mineral formation.

Clay Minerals ◽  
2010 ◽  
Vol 45 (3) ◽  
pp. 383-392 ◽  
Author(s):  
B. Bauluz ◽  
I. Subías

AbstractA set of Silurian black shales from Sierra de Albarracín (NE Spain) corresponding to two different sections was studied to determine the relative influence of diagenesis, igneous activity, and regional tectonics on the clay-mineral genesis. The coexistence of pyrophyllite, I-S interstratifications (R1), ammonium-rich illite, potassium illite, kaolin, and chlorite is not the result of prograde evolution during diagenesis – very low-grade metamorphism. Three different stages may be inferred: (1) sedimentation of black shales (Aeronian, Lower Silurian, to basal Ludfordian, Upper Silurian) and the subsequent diagenetic process producing the coexistence of quartz, illite, kaolinite, organic matter, etc.; (2) intrusion of andesitic sills producing hydrothermal alteration and crystallization of pyrophyllite, ammonium-rich illites, smectite, I-S R1 phases and jarosite; and (3) and folding of shales and sills and development of penetrative schistosity during the late Variscan leading to illite and paragonite recrystallization reaching the anchizone grade.


Clay Minerals ◽  
1984 ◽  
Vol 19 (4) ◽  
pp. 579-590 ◽  
Author(s):  
Tj. Peters ◽  
B. Hofmann

AbstractClay minerals of several hydrothermally altered zones in a 1200-m biotite-granite core from a drillhole in northern Switzerland were studied microscopically, by XRD and by electron microprobe. The minerals principally affected by the hydrothermal alteration were plagioclase (An5-An20) and, to a lesser extent, biotite. Illite, regularly interstratified illite-smectite and dioctahedral chlorite-smectite, dioctahedral chlorite, trioctahedral chlorite and kaolinite were detected in the alteration products. Commonly, two or more clay minerals occurred together in pseudomorphs after plagioclase. The mineral chemistry of the clay minerals showed a predominance of the substitution KAl for Si and, to a lesser extent, MgSi for Al. Fluid-inclusion data and the absence of pure smectite and epidote indicated temperatures of ∼200°C for the fluid that caused this alteration.


Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 473-512 ◽  
Author(s):  
R. J. Merriman

AbstractLower Palaeozoic rocks crop out extensively in Wales, the Lake District of northern England and the Southern Uplands of Scotland; they also form the subcrop concealed beneath the English Midlands and East Anglia. These mainly marine sedimentary rocks were deposited in basins created during plate tectonic assembly of the various terranes that amalgamated to form the British Isles, 400-600 Ma ago. Final amalgamation occurred during the late Lower Devonian Acadian Orogeny when the basins were uplifted and deformed, producing belts of cleaved, low-grade metasediments, so-called slate belts, with a predominantly Caledonian (NE-SW) trend. The clay mineralogy of mudrock lithologies - including mudstone, shale and slate - found in these belts is reviewed. Using X-ray diffraction data from the <2 μm fractions of ~4500 mudrocks samples, clay mineral assemblages are summarized and discussed in terms of diagenetic and low-grade metamorphic reactions, and the metapelitic grade indicated by the Kübler index of illite crystallinity.Two sequences of clay mineral assemblages, or regional assemblages, are recognized. Regional Assemblage A is characterized by a greater diversity of clay minerals in assemblages from all metapelitic grades. It includes K-rich, intermediate Na/K and Na-rich white micas, chlorite and minor amounts of pyrophyllite. Corrensite, rectorite and pyrophyllite are found in the clay assemblages of contact or hydrothermally altered mudstones. K-white micas are aluminous and phengite-poor, with b cell dimensions in the range 8.98-9.02 Å. Regional Assemblage B has fewer clay minerals in assemblages from a range of metapelitic grades. Phengite-rich K-mica is characteristic whereas Na- micas are rare, and absent in most assemblages; chlorite is present and minor corrensite occurs in mudrocks with mafic-rich detritus. Minor amounts of kaolinite are sporadically present, but dickite and nacrite are rare; pyrophyllite and rectorite are generally absent. The b cell dimensions of K-white mica in Regional Assemblage B are in the range 9.02-9.06 Å. The two regional assemblages are found in contrasting geotectonic settings. Regional Assemblage A is characteristic of the extensional basin settings of Wales, the northern Lake District and the Isle of Man. These basins have a history of early burial metamorphism associated with extension, and syn-burial or post-burial intrusive and extrusive volcanic activity. Intermediate Na/K mica probably developed from hydrothermal fluids generated around submarine volcanic centres. Deep diagenetic and low anchizonal clay mineral in these basins may develop a bedding-parallel microfabric. Chlorite-mica stacks also occur in the extensional basins and the stacking planes represent another type of bedding-parallel microfabric. Both types of microfabric are non-tectonic and developed by burial during the extensional phase of basin evolution. Regional Assemblage B is developed in the plate-convergent settings of the Southern Uplands and the southern Lake District. In the accretionary complex of the Southern Uplands the processes of burial diagenesis, metamorphism and tectonism were synchronous events. In both plate- convergent basins, low temperatures and tectonic fabric-formation had an important role in clay mineral reactions, whereas hydrothermal fluids played no part in clay genesis.


Author(s):  
XiaoLong Sun ◽  
Leng Liu ◽  
YiChuan Fang

The combination of organic matter, iron oxide, and clay minerals is of great significance for the adsorption of copper ions (Cu). The purpose of this study is to explore the characteristics of Cu adsorption and laws governing Cu complexation to organic&ndash;inorganic, organic&ndash;clay mineral, and iron-oxide&ndash;clay mineral complexes in the sediments in the estuary of plateau fault and sinking lake&mdash;&mdash;Dianchi Lake. In this study, Cu adsorption tests were performed on the three complexes, in order to study the kinetic behavior of adsorption, Langmuir and Freundlich isotherm models were used. The samples before and after adsorption were characterized via scanning electron microscope (SEM), Fourier infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Our results show that, the Freundlich isotherm models model was able to describe adsorbent behavior in comparison to the Langmuir models. During the Cu adsorption process, the iron-oxide&ndash;clay mineral complex is able to adsorb Cu, via coordination exchange, through the &ndash;OH contained therein. Organic-matter&ndash;clay mineral complexes bonded to the surfaces of clay minerals by replacing the hydroxyl groups with functional groups (carboxyl groups or phenolic hydroxyl groups) contained in the organic matter. Organic&ndash;inorganic composites then adsorbed Cu through the coordination exchange of &ndash;OH in the polar functional groups of alcohols, phenols, and carboxylic acids. The adsorption capacity of Cu in these three sediment complexes was observed to have the following order: organic&ndash;inorganic complex &amp;gt; organic-matter&ndash;clay mineral complex &amp;gt; iron-oxide&ndash;clay mineral complex. The semi-quantitative analysis results of Fourier Infrared Spectroscopy show that the organic matter (changes in the peak area of functional groups such as carboxyl groups) in the organic-inorganic composite material has an important effect on the amount of copper ions adsorbed by clay minerals.


1992 ◽  
Vol 29 (3) ◽  
pp. 432-445 ◽  
Author(s):  
S. J. Sutton ◽  
J. B. Maynard

Confusion exists over the usefulness of chemical data from Precambrian weathering profiles in constraining models of atmospheric evolution. One difficulty is in correctly identifying ancient weathering effects and isolating them from numerous other processes that are likely to have affected such ancient rocks. In this study of a middle Precambrian granitic weathering profile, we have used several analytical techniques to separate weathering-related chemical and mineralogical changes from those resulting from other processes. The profile is exposed beneath the Huronian at Lauzon Bay in the Blind River area of Ontario and has a complex history of alteration events, addition of allochthonous material, and low-grade metamorphism. Much of this history can be deciphered, and changes in mineralogy and bulk and mineral chemistry can be assigned to separate alteration events. Specifically, the granite has undergone preweathering albitization, resulting in Na enrichment, followed by chemical weathering that corroded K-feldspar and nearly destroyed plagioclase feldspar and mica in the regolith. Clay minerals replaced feldspars, resulting in enrichment in Al, Ti, and Zr and depletion in Na, Ca, Sr, and K. Fe has also been leached. After weathering, a fine-grained 0.5 m layer of strongly weathered allochthonous material was deposited on the regolith, followed by deposition of the Matinenda Formation. Sometime after Matinenda deposition, K- and Rb-metasomatim affected the regolith and overlying sediments, converting some clays to illite and depositing secondary K-feldspar. Greenschist-facies metamorphism probably postdated this metasomatism and converted clay minerals to white mica and chlorite.


2004 ◽  
Vol 1 (2) ◽  
pp. 113-121 ◽  
Author(s):  
S. J. Needham ◽  
R. H. Worden ◽  
D. McIlroy

Abstract. By controlled experiments that simulate marine depositional environments, it is shown that accelerated weathering and clay mineral authigenesis occur during the combined process of ingestion, digestion and excretion of fine-grained sediment by two species of annelid worms. Previously characterized synthetic mud was created using finely ground, low-grade metamorphic slate (temperature approximately 300°C) containing highly crystalline chlorite and muscovite. This was added to experiment and control tanks along with clean, wind-blown sand. Faecal casts were collected at regular intervals from the experimental tanks and, less frequently, from the control tanks. Over a period of many months the synthetic mud (slate) proved to be unchanged in the control tanks, but was significantly different in faecal casts from the experimental tanks that contained the worms Arenicola marina and Lumbricus terrestris. Chlorite was preferentially destroyed during digestion in the gut of A. marina. Both chlorite and muscovite underwent XRD peak broadening with a skew developing towards higher lattice spacing, characteristic of smectite formation. A neoformed Fe-Mg-rich clay mineral (possibly berthierine) and as-yet undefined clay minerals with very high d-spacing were detected in both A. marina and L. terrestris cast samples. We postulate that a combination of the low pH and bacteria-rich microenvironment in the guts of annelid worms may radically accelerate mineral dissolution and clay mineral precipitation processes during digestion. These results show that macrobiotic activity significantly accelerates weathering and mineral degradation as well as mineral authigenesis. The combined processes of sediment ingestion and digestion thus lead to early diagenetic growth of clay minerals in clastic sediments.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 353 ◽  
Author(s):  
Lingkang Chen ◽  
Xiongwei Jin ◽  
Haixia Chen ◽  
Zhengwei He ◽  
Lanrong Qiu ◽  
...  

Although clay mineral content in ion-absorbed rare earth ores is crucial for migrating and releasing rare earth elements, the formation, distribution, and migration of clay minerals in supergene rare earth ores have not been fully understood. Therefore, this study analyzes the characteristics of clay mineral type and content, soil particle size, pH value, leaching solution concentration, and leaching rate. This analysis was performed using different methods, such as regional rare earth mine soil surveys, in situ leaching profile monitoring, and indoor simulated leaching. The results showed that the grain size and volume curve of rare earth ore have unimodal and bimodal shapes, respectively. X-ray diffraction showed the differences in clay mineral types formed by different weathered bedrocks. The principal clay minerals were kaolinite, illite, chlorite, and vermiculite, with their relative abundance varying with parent rock lithology (granite and low-grade metamorphic rocks). In the Ganxian granite weathering profile, the kaolinite content increased from top to bottom. The decomposition of feldspar minerals to kaolinite was enhanced with an increase in the SiO2 content during weathering. The in situ leaching profile analysis showed that the kaolinite content increased initially and then decreased, whereas the illite/mica content exhibited the opposite trend. Under stable leaching solution concentration and leaching rate, clay mineral formation is favored by lower pH. Low pH, low leaching rate, and highly-concentrated leaching solution (12 wt%) resulted in a slow increase in kaolinite content in the upper part of the profile (30 cm). A lower concentration of the leaching solution (4 wt%) resulted in rapid enrichment of kaolinite after 15 days. Low pH, leaching solution concentration, and leaching rate promoted the formation of distinct kaolinite horizons. We suggest that by disregarding other control factors, rare earth recovery of over 90% can be achieved through leach mining with solutions of 8 wt% and a pH of 5 at a leaching rate of 5 mL/min.


Sign in / Sign up

Export Citation Format

Share Document