Clay mineral assemblages in British Lower Palaeozoic mudrocks

Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 473-512 ◽  
Author(s):  
R. J. Merriman

AbstractLower Palaeozoic rocks crop out extensively in Wales, the Lake District of northern England and the Southern Uplands of Scotland; they also form the subcrop concealed beneath the English Midlands and East Anglia. These mainly marine sedimentary rocks were deposited in basins created during plate tectonic assembly of the various terranes that amalgamated to form the British Isles, 400-600 Ma ago. Final amalgamation occurred during the late Lower Devonian Acadian Orogeny when the basins were uplifted and deformed, producing belts of cleaved, low-grade metasediments, so-called slate belts, with a predominantly Caledonian (NE-SW) trend. The clay mineralogy of mudrock lithologies - including mudstone, shale and slate - found in these belts is reviewed. Using X-ray diffraction data from the <2 μm fractions of ~4500 mudrocks samples, clay mineral assemblages are summarized and discussed in terms of diagenetic and low-grade metamorphic reactions, and the metapelitic grade indicated by the Kübler index of illite crystallinity.Two sequences of clay mineral assemblages, or regional assemblages, are recognized. Regional Assemblage A is characterized by a greater diversity of clay minerals in assemblages from all metapelitic grades. It includes K-rich, intermediate Na/K and Na-rich white micas, chlorite and minor amounts of pyrophyllite. Corrensite, rectorite and pyrophyllite are found in the clay assemblages of contact or hydrothermally altered mudstones. K-white micas are aluminous and phengite-poor, with b cell dimensions in the range 8.98-9.02 Å. Regional Assemblage B has fewer clay minerals in assemblages from a range of metapelitic grades. Phengite-rich K-mica is characteristic whereas Na- micas are rare, and absent in most assemblages; chlorite is present and minor corrensite occurs in mudrocks with mafic-rich detritus. Minor amounts of kaolinite are sporadically present, but dickite and nacrite are rare; pyrophyllite and rectorite are generally absent. The b cell dimensions of K-white mica in Regional Assemblage B are in the range 9.02-9.06 Å. The two regional assemblages are found in contrasting geotectonic settings. Regional Assemblage A is characteristic of the extensional basin settings of Wales, the northern Lake District and the Isle of Man. These basins have a history of early burial metamorphism associated with extension, and syn-burial or post-burial intrusive and extrusive volcanic activity. Intermediate Na/K mica probably developed from hydrothermal fluids generated around submarine volcanic centres. Deep diagenetic and low anchizonal clay mineral in these basins may develop a bedding-parallel microfabric. Chlorite-mica stacks also occur in the extensional basins and the stacking planes represent another type of bedding-parallel microfabric. Both types of microfabric are non-tectonic and developed by burial during the extensional phase of basin evolution. Regional Assemblage B is developed in the plate-convergent settings of the Southern Uplands and the southern Lake District. In the accretionary complex of the Southern Uplands the processes of burial diagenesis, metamorphism and tectonism were synchronous events. In both plate- convergent basins, low temperatures and tectonic fabric-formation had an important role in clay mineral reactions, whereas hydrothermal fluids played no part in clay genesis.

Clay Minerals ◽  
2002 ◽  
Vol 37 (2) ◽  
pp. 207-219 ◽  
Author(s):  
R. J . Merriman

AbstractRegional differences in clay mineralogy are found in British Lower Palaeozoic slate belts formed during Caledonian terrane amalgamation. Extensional basins in Wales, the northern Lake District and the Isle of Man are characterized by a greater diversity of species in clay mineral assemblages. Slates that evolved in these basins contain both the K- and Na-rich products of the 2:1 dioctahedral reaction series. Pyrophyllite, rectorite and corrensite are sporadically distributed but kaolinite is rarely recorded even in lowest-grade mudstones. In contrast, clay assemblages that evolved in the convergent basins of the Scottish Southern Uplands and northern England generally contain fewer mineral species, and Na-micas and pyrophyllite are rare or absent. Na-bearing clays may have been generated from low-temperature mixing of hydrothermal fluids and seawater in the extensional basins. Such fluids appear to have been unavailable in the convergent basins through lack of volcanic activity in the early stages of basin development.


2008 ◽  
Vol 146 (2) ◽  
pp. 237-251 ◽  
Author(s):  
S. J. KEMP ◽  
R. J. MERRIMAN

AbstractA series of boreholes in Horton Quarry, northwest Yorkshire (Horton-in-Ribblesdale Inlier) penetrated mudstones and slates belonging to the Austwick Formation (Windermere Supergroup) overlying laminated mudstones of the Ingleton Group. Illite (IC) and chlorite (ChC) crystallinity measurements indicate a metamorphic inversion between the two groups of mudrocks. The Windermere Supergroup mudrocks are mostly in the high anchizone or epizone, whereas the Ingletonian samples are lower grade in terms of IC, and are mostly deep diagenetic zone or low anchizone. Hence younger strata at higher grades rest on older strata at lower grades, creating a metamorphic inversion. Ingletonian slates exposed at Pecca Falls on the River Twiss show epizonal and anchizonal IC values, and greywacke samples from Ingleton Quarry contain pumpellyite. This suggests that grade in the Ingletonian may increase to the NW from the Horton to Ingleton inliers. K-white mica b cell dimensions show further differences between the Ingleton Group and the Windermere Supergroup. The Ingletonian samples are characterized by low b cell values (8.989–9.035, mean 9.007 Å), whereas the Windermere Supergroup has higher values in the range 9.022–9.034, mean 9.027 Å. The Windermere Supergroup values are similar to those recorded from the Windermere Supergroup of the southern Lake District, and Lower Palaeozoic rocks from the Scottish Southern Uplands, and are consistent with metamorphism in a low heat flow, convergent geotectonic setting. The Ingletonian b cell values suggest metamorphism in a higher heat flow setting, most likely an extensional basin. The metamorphic inversion at Horton and differences in K-white mica b cell dimensions suggest that the Ingleton Group and Windermere Supergroup strata evolved in different geotectonic settings and record two separate metamorphic events. The discovery of the metamorphic inversion at Horton provides further evidence in favour of an Ordovician rather than Neoproterozoic depositional age for the controversial Ingleton Group.


Clay Minerals ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 25-55 ◽  
Author(s):  
C. V. Jeans ◽  
D. S. Wray ◽  
R. J. Merriman ◽  
M. J. Fisher

AbstractThe nature and origin of authigenic clay minerals and silicate cements in the Jurassic and Cretaceous sediments of England and the North Sea are discussed in relation to penecontemporaneous volcanism in and around the North Sea Basin. Evidence, including new REE data, suggests that the authigenic clay minerals represent the argillization of volcanic ash under varying diagenetic conditions, and that volcanic ash is a likely source for at least the early silicate cements in many sandstones. The nature and origin of smectite-rich, glauconite-rich, berthierine-rich and kaolin-rich volcanogenic clay mineral deposits are discussed. Two patterns of volcanogenic clay minerals facies are described. Pattern A is related to ash argillization in the non-marine and marine environments. Pattern B is developed by the argillization of ash concentrated in the sand and silt facies belts in the seas bordering ash-covered islands and massifs. It is associated with regression/ transgression cycles which may be related to thermal doming and associated volcanism, including the submarine release of hydrothermal fluids rich in Fe. The apparent paucity of volcanogenic clay deposits in the Jurasssic and Early Cretaceous sediments of the North Sea is discussed.


1987 ◽  
Vol 124 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Julian E. Andrews

AbstractClay minerals from Middle Jurassic lagoonal mudrocks, siltstones and silty fine-grained sandstones of the upper Great Estuarine Group (Bathonian) are divided into four assemblages. Assemblage 1, the most common assemblage, is rich in mixed-layer illite–smectite with attendant illite and kaolinite. Assemblage 2 is dominated by smectitic clay. These assemblages are indicative of primary Jurassic deposition. Illite and kaolinite were probably derived from the weathering of older rocks and soils in the basin hinterland and were deposited in the lagoons as river-borne detritus. The majority of smectite and mixed-layer illite–smectite is interpreted as the argillization product of Jurassic volcanic dust, also deposited in the lagoons by rivers. Near major Tertiary igneous intrusions these depositional clay mineral assemblages have been altered. Assemblage 3 contains smectite-poor mixed-layer illite–smectite, whilst Assemblage 4 contains no smectitic clay at all. Destruction of smectite interlayers occurred at relatively shallow burial depths (< 2500 m) due to enhanced geothermal gradients and local convective hot-water circulation cells associated with the major Tertiary igneous intrusions.


Clay Minerals ◽  
2002 ◽  
Vol 37 (4) ◽  
pp. 699-707 ◽  
Author(s):  
A. Mirabella ◽  
M. Egli ◽  
S. Carnicelli ◽  
G. Sartori

AbstractThe formation of clay minerals was investigated in Spodosols developed in the subalpine belt, with similar exposure, climate and age, but deriving from different parent materials. All the soils were classified as Haplic Podzols and showed the characteristic eluviation and illuviation features of Fe, Al and organic carbon. However, varying parent material lithology led to different clay mineral assemblages in the soil. Smectite could be found in the E horizons of soils developed from granodiorite and tonalite materials. Its formation was strongly dependent on the presence of chlorite in the parent material. If nearly no other 2:1 mineral components, such as chlorite, are present in the lower soil horizons, then a residual micaceous mineral becomes the dominant clay mineral. The latter derives from a mica-vermiculite interstratified mineral.


Clay Minerals ◽  
2001 ◽  
Vol 36 (3) ◽  
pp. 325-333 ◽  
Author(s):  
J. F. Barrenechea ◽  
M. Rodas ◽  
M. Frey ◽  
J. Alonso-Azcárate ◽  
J. R. Mas

AbstractThe clay mineral assemblages of the Tithonian and Berriasian sediments (Tera and Oncala Groups) in the eastern part of the Cameros basin are investigated at seven localities. The lowest-grade assemblage, located on the southern border of the basin, contains calcite + quartz + hematite + kaolinite + mixed-layer illite-smectite (R = 1, 65 85% illite layers) + discrete illite (IC = 0.5 0.65Δ°2θ). Systematic increases in the illite and chlorite crystallinities suggest increasing metamorphic grade from the northwest part of the basin to the southeast. This trend does not follow the pattern previously described for the overlying late Berriasian–early Aptian sediments (Urbión and Enciso Groups), which exhibit a higher metamorphic grade. This may result from local variations in sedimentary facies, as well as the circulation of hot migratory fluids. Tertiary compression occurring long after the main metamorphic event is considered to be responsible for the enhanced illite and chlorite crystallinities measured in the SE extreme of the basin.


1982 ◽  
Vol 119 (3) ◽  
pp. 243-256 ◽  
Author(s):  
J. Craig ◽  
W. R. Fitches ◽  
A. J. Maltman

SummaryWeakly deformed, low grade, Lower Palaeozoic metasediments from central Wales contain abundant stack-like intergrowths of chlorite and white mica that closely resemble stacks described from the Devonian Hunsruckschiefer of West Germany; the Ordovician Martinsburg Slate, New Jersey, U.S.A.; and elsewhere. Several theories have been proposed to explain the origin of such stacks, including a detrital origin; strain-controlled growth of chlorite on a detrital mica nucleus; and strain-controlled intergrowth during metamorphism. None of these satisfactorily explains the central Wales stacks. A detrital origin is precluded by the presence of many stacks with shapes too delicate to have survived transportation, and a lack of hydrodynamic equivalence between the stacks and the clastic host grains. Features inconsistent with strain-controlled growth are constant alignment parallel to bedding but non-systematic orientation with respect to tectonic cleavage, their common occurrence in undeformed rocks, and petrographic evidence that they precede the tectonic cleavage. It is proposed that the stacks formed during diagenesis and low-grade metamorphism, and before the onset of deformation, through mimetic growth on a primary bedding fabric composed of clay minerals.


Clay Minerals ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 389-404 ◽  
Author(s):  
M. Setti ◽  
L. Marinoni ◽  
A. Lopez-Galindo

AbstractThe CRP-3 drilling project collected sediments from 3 to 939 mbsf (metres below sea floor) in the Victoria Land Basin in Antarctica. The upper sequence (down to ~790 m bsf) is of Cenozoic age and made up of detrital glaciogenic sediments; the characteristics of clay minerals in this part have been reported elsewhere. Here, the compositional features of clay minerals in the lower sequence such as conglomerates, Devonian sandstones and dolerites are described and genetic processes clarified. Clay minerals in the deepest part of the sequence derive from the alteration of different lithologies that mostly make up the sedimentary basin.Two clay mineral assemblages were characterized through analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). From 790 to 823 mbsf, samples consist of authigenic smectite of variable chemical composition forming imbricated texture of plates or flakes. The smectites probably result from hydrothermal/diagenetic transformation of earlier minerals. The primary smectite cement underwent reorganization during shearing and cataclasis. The lowest part of the sequence (below 823 mbsf) is characterized by an assemblage of kaolinite, mixed-layer illite-smectite, Fe oxyhydroxide, sporadic smectite and poorly crystallized illite. It reflects a stronger alteration process than that recorded in the upper units of core CRP-3, related to hydrothermalism connected with the intrusion of an igneous body. Both assemblages show clear differences in particle morphology, texture and smectite composition to the clay assemblages found in the Cenozoic glaciomarine sediments in the upper sequence. The different phases of alteration appear related to the processes of rifting, exhumation and faulting that characterized this region since the Mesozoic.


Clay Minerals ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 119-133 ◽  
Author(s):  
J. F. Barrenechea ◽  
M. Rodas ◽  
J. R. Mas

AbstractThe clay mineral distribution in the Early Cretaceous depositional sequences along the Cameros Basin has been established on the basis of XRD traces and TEM/EDAX analyses. Samples from the Latest Berriasian-Barremian depositional sequences are characteristic of epimetamorphic conditions. Illite ‘crystallinities’ are broader than expected (0.35–0.490°Δ2θ), due to the consistent presence of K-mica-paragonite mixed-layer and discrete paragonite associated with the illite 10 Å peak. The Late Barremian-Early Aptian depositional sequence, around the depocentral sector of the basin, represents a sudden change to anchimetamorphic conditions, marked by the presence of pyrophyllite and rectorite and by a significant decrease in the A1IV content of the chlorites. Towards the northwestern border of the basin, this sequence was affected by deep diagenetic conditions, as deduced from the clay mineral association and the ‘crystallinity’ values (0.57°Δ2θ). The changes in the clay mineral assemblages and ‘crystallinity’ data can hardly be explained in terms of the varying burial depth and are related to changes in the circulation of fluids associated with varying facies (modal composition, grain size). Permeability is regarded as the main factor controlling the circulation of these migratory fluids.


Clay Minerals ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 481-500 ◽  
Author(s):  
Ö. Bozkaya ◽  
H. Yalçin

AbstractPalaeozoic to early Mesozoic rocks of both autochthonous and allochthonous units of the Eastern Tauride Belt have different textural and mineralogical features related to their varying deposition regimes and thermal histories. The Devonian and Carboniferous formations in the allocthonous units have anchizonal to epizonal grades of metamorphism, whereas those of the autochthon experienced only early diagenetic conditions. A well-developed penetrative slaty cleavage is also found in Devonian formations of the allocthonous units, which is not observed in equivalent rocks of the autochthon. Phyllosilicates of the uncleaved diagenetic assemblages consist mainly of illite, chlorite, kaolinite, mixed-layer illite-smectite, chlorite-vermiculite and chloritesmectite, whereas in addition to these, metamorphic allochthonous units contain some index minerals such as dickite, paragonite, Na and K mica, pyrophyllite, stilpnomelane and chloritoid. These latter assemblages show a higher degree of textural and mineralogical maturation and lower b cell dimensions than the autochthonous rocks, suggesting that they originated in a relatively high heat flow basin such as an extensional setting.


Sign in / Sign up

Export Citation Format

Share Document