CD8+T cells specific for cancer germline gene antigens are found in many patients with multiple myeloma, and their frequency correlates with disease burden

Blood ◽  
2005 ◽  
Vol 106 (13) ◽  
pp. 4217-4224 ◽  
Author(s):  
Oliver Goodyear ◽  
Karen Piper ◽  
Naeem Khan ◽  
Jane Starczynski ◽  
Prem Mahendra ◽  
...  

The expression of cancer germline antigens (CGAgs) is normally restricted to the testis but is also present in many types of malignant cells including plasma cells from patients with myeloma. Because T-cell immune responses to CGAg have been identified in patients with solid tumors, this may offer a novel target for immunotherapy in patients with myeloma. We have used 12 peptide epitopes from a range of CGAgs to screen for CGAg-specific T cells in blood from patients with multiple myeloma at various stages of their disease. T cells from 15 of 37 patients responded to one or more CGAg peptides and the magnitude of the CGAg-specific CD8+ T-cell response ranged between 0.0004% and 0.1% of the total CD8+ T-cell pool. Serial analyses showed that these immune responses were detectable in individual patients at multiple time points during the course of their disease. In patients undergoing treatment or in disease relapse, the magnitude of the CGAg-specific T-cell response was positively correlated with the level of paraprotein. Functional T cells specific for CGAgs are therefore present in a proportion of patients with multiple myeloma and offer the possibility of a novel approach for immunotherapy in this disease.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3507-3507
Author(s):  
Oliver Goodyear ◽  
Karen Piper ◽  
Naeem Khan ◽  
Jane Starczynski ◽  
Prem Mahendra ◽  
...  

Abstract The expression of Cancer Germline Antigens (CGAgs) is normally restricted to the pre-meiotic spermatogonia cells of the testis. The testis is an immunologically privileged site and so immunological tolerance to CGAg is not established. However, CGAg expression is also detected in many types of malignant disease including plasma cells from patients with multiple myeloma. CGAg expression has been shown to prime a T cell immune response in many patients with solid tumours and this may offer a novel target for immunotherapy in patients with myeloma. We have used immunodominant peptide epitopes from a range of CGAgs to screen for CGAg-specific T cells in the blood of patients with multiple myeloma at various stages of their disease. Initial studies demonstrated that T cells from 15 out of 37 patients responded to one or more CGAg peptides and the magnitude of the CGAg-specific CD8+ T cell response ranged between 0.0004% and 0.1% of the total CD8+ T cell pool. Serial analysis showed that these immune responses were detectable in individual patients at multiple time-points during the course of their disease. A further 13 peptides have now been obtained including several CD4 peptide. We have subsequently cloned CD4 T cells specific to a MAGE 3 peptide and have shown them to be functional. In some patients we determined the membrane phenotype of the CGAg-reactive cells as CD45RA+ and CCR7−, an effector memory differentiation state. CGAg-specific responses have also been detected in patients with clinically benign forms of paraproteinaemia indicating that T cell immunity may play a role in the control of disease progression. Plasma cells are localised to bone marrow and we are now focussing on the study of immunity to CGAg at this site. Initial findings indicate a higher proportion of CGAg-specific T cells within bone marrow and the phenotypic profile of these cells is being determined. Functional T cells specific for CGAg are therefore present in a large proportion of patients with multiple myeloma and offer the possibility of a novel approach for immunotherapy in this disease.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S852-S853
Author(s):  
Hassen Kared ◽  
Evan Bloch ◽  
Andrew Redd ◽  
Alessandra Nardin ◽  
Hermi Sumatoh ◽  
...  

Abstract Background Understanding the diversity, breadth, magnitude, and functional profile of the T cell response against SARS-CoV-2 in recovered COVID-19 individuals is critical to evaluate the contribution of T cells to produce a potentially protective immune response. Methods We used a multiplexed peptide-MHC tetramer approach to screen a total of 408 SARS-CoV-2 candidate peptide epitopes for CD8+ T cell recognition in a cohort of 30 individuals recovered from COVID-19. The peptides spanned the whole viral genome and were restricted to six prevalent HLA alleles; T cells were simultaneously characterized by a 28-marker phenotypic panel. The evolution of the SARS-CoV-2 T cell responses was then statistically modeled against time from diagnosis, and in relation to humoral and inflammatory response. Workflow for Study. A multiplexed peptide-MHC tetramer approach was used to screen SARS-CoV-2 candidate peptide epitopes in a cohort of 30 COVID-19 recovered patients across 6 prevalent HLA alleles, and T cells profiled with a 28-marker phenotypic panel. Multiplex tetramer screen. One representative COVID-19 recovered patient and one healthy donor were screened for HLA- relevant SARS-CoV-2 epitopes, as well as epitopes for CMV, EBV, Influenza, Adenovirus and MART-1. Shown are the frequencies of tetramer-positive CD8 T cells from 2 technical replicates per subject. Results Almost all individuals screened showed a T cell response against SARS-CoV-2 (29/30): 132 SARS-CoV-2-specific CD8+ T cells hits were detected, corresponding to 52 unique reactive epitopes. Twelve of the 52 unique SARS-CoV-2-specific epitopes were recognized by more than 40% of the individuals screened, indicating high prevalence in the subjects. Importantly, these CD8+ T cell responses were directed against both structural and non-structural viral proteins, with the highest magnitude against nucleocapsid derived peptides, but without any antigen-driven bias in the phenotype of specific T cells. Overall, SARS-CoV-2 T cells showed specific states of differentiation (stem-cell memory and transitional memory), which differed from those of MART-1, influenza, CMV and EBV-specific T cells. UMAP visualization revealed a phenotypic profile of SARS-CoV-2-specific CD8 T cells in COVID-19 convalescent donors that is distinct from other viral specificities, such as influenza, CMV, EBV and Adenovirus. SARS-CoV-2 epitope screening revealed CD8+ T cell responses directed against both structural and non-structural viral proteins, with the highest magnitude response against nucleocapsid derived peptides Conclusion The kinetics modeling demonstrates a dynamic, evolving immune response characterized by a time-dependent decrease in overall inflammation, increase in neutralizing antibody titer, and progressive differentiation of a broad SARS-CoV-2 CD8 T cell response. It could be desirable to aim at recapitulating the hallmarks of this robust CD8 T cell response in the design of protective COVID-19 vaccines. Disclosures Hassen Kared, PhD, ImmunoScape (Shareholder) Alessandra Nardin, DvM, ImmunoScape (Shareholder) Hermi Sumatoh, BSc, Dip MTech, ImmunoScape (Shareholder) Faris Kairi, BSc, ImmunoScape (Shareholder) Daniel Carbajo, PhD, ImmunoScape (Shareholder) Brian Abel, PhD, MBA, ImmunoScape (Shareholder) Evan Newell, PhD, ImmunoScape (Shareholder)


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 3-3
Author(s):  
Ning Li ◽  
Thais Bertolini ◽  
Roland W Herzog

Adeno-associated viral (AAV) vectors are currently evaluated in multiple Phase III clinical trial for the treatment of hemophilia and neuromuscular disorders. A major concern is the potential for immune responses. Viral vectors are initially sensed by the innate immune system, which shapes subsequent adaptive immune responses. Particularly, toll-like receptors (TLRs) have been reported as major sensors of pathogens during innate immune response. TLRs recognize pathogen-associated molecular patterns (PAMPs). Our previous studies found that cross-priming of AAV capsid-specific CD8+ T cells depended on TLR9-MyD88 pathway. TLR9 is an endosomal DNA receptor that responds most potently to unmethylated CpG motifs as found in bacterial and viral DNA. Similarly, others documented TLR9-dependent CD8+ T cell responses against non-secreted transgene products such as LacZ and hemagglutinin upon muscle-directed AAV gene transfer. Similarly, we published that CD8+ T cell responses to a secreted ovalbumin (ova) transgene product were substantially reduced (although not entirely eliminated) upon muscle gene transfer in TLR9-deficient mice [J Innate Immun. 7:302-14]. For those studies, we had used a self-complementary scAAV genomes, which we found to more strongly activate TLR9 than conventional single-stranded ssAAV vectors. Here, we performed intramuscular injections of 3 doses of ssAAV1-CMV-ova vector (2X1010, 2X1011 and1X1012 vg) in wild-type (WT), TLR9-/-, or MYD88-/- C57BL/6 mice. Using MHC tetramer (H2-Kb -SIINFEKL), ova-specific CD8+ T cell frequencies were monitored in peripheral blood for up to 6 weeks. As expected from prior studies, TLR9-/- mice showed a substantially reduced response (1.2% tetramer+ of CD8) at the low dose when compared to WT (12% tetramer+ of CD8) animals (p<0.0001, n=5/group). To our surprise, CD8+ T cell responses were similar in TLR9-/- and WT mice at the 2 higher doses. TLR9-/- mice displayed 16% and 3.3% tetramer+ of CD8 frequencies at the median and the high doses, respectively; which was comparable to WT mice, where 15% and 4.8% tetramer+ of CD8 frequencies were observed (n=5/group). Therefore, sensing of the AAV genome by TLR9 is more critical for the CD8+ T cell response to the secreted transgene product at lower vector doses (possibly related to the lower levels of transgene expression). Interestingly, transgene product-specific CD8+ T cell responses were much reduced in MyD88-/- mice, in which 0.2% and 1.7% tetramer+ of CD8 frequencies were found for low and median doses. Therefore, an alternative signaling pathway that includes the MyD88 adaptor molecule likely exists that is more critical than TLR9 above a certain level of expression. The reduced strength of the CD8+ T cell response seen at the highest vector dose compared to the medium dose may be explained by a transient increase in FoxP3+ Treg and in PD-1+ T cells that we observed 1 week after gene transfer and that was significantly greater at the highest vector dose. In related experiments, we performed intramuscular gene transfer using a ssAAV1-EF1a-FIX vector in hemophilia B mice (C3H/HeJ F9-/-, 1x1011 vg/mouse). Here, we used either a vector with native sequences or with an expression cassette that was entirely devoid of CpG motifs (and there stimulates TLR9 less effectively). CpG depletion did not have substantial effects on antibody formation against human FIX or the viral capsid. However, CD8+ T cell infiltrates in skeletal muscle were markedly reduced but not entirely eliminated when tissue sections were examined 1 month after gene transfer. In conclusion, TLR9 signaling is one important factor in the activation of transgene product-specific CD8+ T cells in AAV gene transfer, but other pathways exist that may be more critical depending on vector dose or levels of expression. Disclosures Herzog: Takeda Pharmaceuticals: Patents & Royalties.


2016 ◽  
Vol 90 (10) ◽  
pp. 5187-5199 ◽  
Author(s):  
Qingsong Qin ◽  
Shwetank ◽  
Elizabeth L. Frost ◽  
Saumya Maru ◽  
Aron E. Lukacher

ABSTRACTMouse polyomavirus (MPyV) is a ubiquitous persistent natural mouse pathogen. A glutamic acid (E)-to-glycine (G) difference at position 91 of the VP1 capsid protein shifts the profile of tumors induced by MPyV from an epithelial to a mesenchymal cell origin. Here we asked if this tropism difference affects the MPyV-specific CD8 T cell response, which controls MPyV infection and tumorigenesis. Infection by the laboratory MPyV strain RA (VP1-91G) or a strain A2 mutant with an E-to-G substitution at VP1 residue 91 [A2(91G)] generated a markedly smaller virus-specific CD8 T cell response than that induced by A2(VP1-91E) infection. Mutant A2(91G)-infected mice showed a higher frequency of memory precursor (CD127hiKLRG1lo) CD8 T cells and a higher recall response than those of A2-infected mice. Using T cell receptor (TCR)-transgenic CD8 T cells and immunization with peptide-pulsed dendritic cells, we found that early bystander inflammation associated with A2 infection contributed to recruitment of the larger MPyV-specific CD8 T cell response. Beta interferon (IFN-β) transcripts were induced early during A2 or A2(91G) infections. IFN-β inhibited replication of A2 and A2(91G)in vitro. Using mice lacking IFN-αβ receptors (IFNAR−/−), we showed that type I IFNs played a role in controlling MPyV replicationin vivobut differentially affected the magnitude and functionality of virus-specific CD8 T cells recruited by A2 and A2(91G) viral infections. These data indicate that type I IFNs are involved in protection against MPyV infection and that their effect on the antiviral CD8 T cell response depends on capsid-mediated tropism properties of the MPyV strain.IMPORTANCEIsolates of the human polyomavirus JC virus from patients with the frequently fatal demyelinating brain disease progressive multifocal leukoencephalopathy (PML) carry single amino acid substitutions in the domain of the VP1 capsid protein that binds the sialic acid moiety of glycoprotein/glycolipid receptors on host cells. These VP1 mutations may alter neural cell tropism or enable escape from neutralizing antibodies. Changes in host cell tropism can affect recruitment of virus-specific CD8 T cells. Using mouse polyomavirus, we demonstrate that a single amino acid difference in VP1 known to shift viral tropism profoundly affects the quantity and quality of the anti-polyomavirus CD8 T cell response and its differentiation into memory cells. These findings raise the possibility that CD8 T cell responses to infections by human polyomaviruses may be influenced by VP1 mutations involving domains that engage host cell receptors.


2014 ◽  
Vol 20 (10) ◽  
pp. 1312-1321 ◽  
Author(s):  
Jyothi T Mony ◽  
Reza Khorooshi ◽  
Trevor Owens

Background: Myelin-specific T cells are implicated in multiple sclerosis (MS) and drive experimental autoimmune encephalomyelitis (EAE). EAE is commonly induced with short peptides, whereas in MS, whole myelin proteins are available for immune response. We asked whether immunization with the immunoglobulin-like domain of myelin oligodendrocyte glycoprotein (MOGIgd, residues 1–125) might induce distinct CD4+ T-cell response and/or a stronger CD8+ T-cell response, compared to the 21 amino acid immunodominant MHC II-associating peptide (p35–55). Objectives: Compare both EAE and T-cell responses in C57BL/6 mice immunized with MOGIgd and MOG p35–55. Methods: Cytokine production, and chemokine receptor expression by CD4+ and CD8+ T cells in the mouse central nervous system (CNS), were analyzed by flow cytometry. Results: MOGIgd triggered progression to more severe EAE than MOG p35–55, despite similar time of onset and overall incidence. EAE in MOGIgd-immunized mice was characterized by an increased percentage of CXCR3+ interferon-γ-producing CD4+ T cells in CNS. The CD8+ T-cell response to both immunogens was similar. Conclusions: Increased incidence of severe disease following MOGIgd immunization, accompanied by an increased percentage of CD4+ T cells in the CNS expressing CXCR3 and producing interferon-γ, identifies a pathogenic role for interferon-γ that is not seen when disease is induced with a single Major Histocompatibility Complex (MHC) II-associating epitope.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A626-A626
Author(s):  
Annah Rolig ◽  
Daniel Rose ◽  
Grace Helen McGee ◽  
Saul Kivimae ◽  
Werner Rubas ◽  
...  

BackgroundTumor cell death caused by radiation therapy (RT) can trigger anti-tumor immune responses in part because dying cells release adjuvant factors that amplify and sustain DC and T cell responses. We previously demonstrated that bempegaldesleukin (BEMPEG:NKTR-214, a first-in-class CD122-preferential IL-2 pathway agonist), significantly enhanced the anti-tumor efficacy of RT through a T cell-dependent mechanism. Because RT can induce either immunogenic or tolerogenic cell death, depending on a multitude of factors (radiation dose, cell cycle phase, and tumor microenvironment), we hypothesized that providing a specific immunogenic adjuvant, like intratumoral NKTR-262, a novel toll-like receptor (TLR) 7/8 agonist, to the tumor site would further improve systemic tumor-specific immunity by promoting synergistic activation of local immunostimulatory innate immune responses. Therefore, we evaluated whether intratumoral NKTR-262, combined with systemic BEMPEG treatment would result in improved tumor-specific immunity and survival compared to BEMPEG combined with RT.MethodsTumor-bearing mice (CT26; EMT6) received BEMPEG (0.8 mg/kg; iv), RT (16 Gy x 1), and/or intratumoral NKTR-262 (0.5 mg/kg). Flow cytometry was used to evaluate CD4+ and CD8+ T cell activation status in the blood and tumor (7 days post-treatment). The contribution of specific immune subsets was determined by depletion of CD4+, CD8+, or NK cells. CD8+ T cell cytolytic activity was determined in vitro with an Incucyte assay. Data are representative of 1–2 independent experiments (n=5–14/group) and statistical significance was determined by 1-way ANOVA (p-value cut-off of 0.05).ResultsBEMPEG/NKTR-262 resulted in significantly improved survival compared to BEMPEG/RT. Both combination therapies were CD8+ T cell dependent. However, response to BEMPEG/NKTR-262 was characterized by a significant expansion of activated CD8+ T cells (GzmA+; Ki-67+; ICOS+; PD-1+) in the blood, which correlated with reduced tumor size (p<0.05). In the tumor, BEMPEG/NKTR-262 induced higher frequencies of GzmA+ CD8+ T cells exhibiting reduced expression of suppressive molecules (PD-1+, TIM-3+), compared to BEMPEG/RT. Additionally, CD8+ T cells isolated from BEMPEG/NKTR-262-treated tumors had greater cytolytic capacity than those from BEMPEG/RT-treated mice.ConclusionsCombining BEMPEG with NKTR-262 lead to a more robust expansion of activated CD8+ T cells compared to the BEMPEG/RT combination. Enhancement of the activated CD8+ T cell response in mice treated with NKTR-262 in combination with BEMPEG suggests that intratumoral TLR stimulation provides superior antigen presentation and costimulatory activity compared to RT. A clinical trial of BEMPEG/NKTR-262 for patients with metastatic solid tumors is in progress (NCT03435640).


2018 ◽  
Author(s):  
Xiaoyan Zheng ◽  
Jennifer Dora Oduro ◽  
Julia Désirée Boehme ◽  
Lisa Borkner ◽  
Thomas Ebensen ◽  
...  

Cytomegalovirus (CMV) is a ubiquitous β-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections.


2020 ◽  
Vol 8 (2) ◽  
pp. e001157
Author(s):  
Juliane Schuhmacher ◽  
Sonja Heidu ◽  
Torben Balchen ◽  
Jennifer Rebecca Richardson ◽  
Camilla Schmeltz ◽  
...  

BackgroundPeptide-based vaccination is a rational option for immunotherapy of prostate cancer. In this first-in-man phase I/II study, we assessed the safety, tolerability and immunological impact of a synthetic long peptide vaccine targeting Ras homolog gene family member C (RhoC) in patients with prostate cancer. RhoC is a small GTPase overexpressed in advanced solid cancers, metastases and cancer stem cells.MethodsTwenty-two patients who had previously undergone radical prostatectomy received subcutaneous injections of 0.1 mg of a single RhoC-derived 20mer peptide emulsified in Montanide ISA-51 every 2 weeks for the first six times, then five times every 4 weeks for a total treatment time of 30 weeks. The drug safety and vaccine-specific immune responses were assessed during treatment and thereafter within a 13-month follow-up period. Serum level of prostate-specific antigen was measured up to 26 months postvaccination.ResultsMost patients (18 of 21 evaluable) developed a strong CD4 T cell response against the vaccine, which lasted at least 10 months following the last vaccination. Three promiscuouslypresented HLA-class II epitopes were identified. Vaccine-specific CD4 T cells were polyfunctional and effector memory T cells that stably expressed PD-1 (CD279) and OX-40 (CD134), but not LAG-3 (CD223). One CD8 T cell response was detected in addition. The vaccine was well tolerated and no treatment-related adverse events of grade ≥3 were observed.ConclusionTargeting of RhoC induced a potent and long-lasting T cell immunity in the majority of the patients. The study demonstrates an excellent safety and tolerability profile. Vaccination against RhoC could potentially delay or prevent tumor recurrence and metastasis formation.Trial registration numberNCT03199872.


2000 ◽  
Vol 74 (17) ◽  
pp. 8094-8101 ◽  
Author(s):  
Robbert G. van der Most ◽  
Kaja Murali-Krishna ◽  
Rafi Ahmed ◽  
James H. Strauss

ABSTRACT We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.


Sign in / Sign up

Export Citation Format

Share Document