ICAM-2 mediates neutrophil transmigration in vivo: evidence for stimulus specificity and a role in PECAM-1–independent transmigration

Blood ◽  
2006 ◽  
Vol 107 (12) ◽  
pp. 4721-4727 ◽  
Author(s):  
Miao-Tzu Huang ◽  
Karen Y. Larbi ◽  
Christoph Scheiermann ◽  
Abigail Woodfin ◽  
Nicole Gerwin ◽  
...  

AbstractICAM-2 has been implicated in leukocyte transmigration in vitro, but there is little in vivo evidence to support this. To address this, neutrophil migration was investigated in ICAM-2–deficient mice (KO) and in wild-type (WT) mice treated with an anti–ICAM-2 blocking monoclonal antibody (mAb) (3C4). In a peritonitis model, IL-1β–induced accumulation of neutrophils was significantly reduced in mice treated with 3C4 (51% inhibition) and in KO mice (41% inhibition). In contrast, TNF-α– or thioglycolate-induced responses were not suppressed in KO mice. Analysis of IL-1β–induced leukocyte responses in cremasteric venules of KO animals by intravital microscopy indicated a defect in transmigration (44% inhibition) but not rolling or adhesion. As found before, TNF-α–induced leukocyte transmigration was unaltered in the KO mice. WT mice treated with the anti–ICAM-2 mAb also exhibited a selective reduction in leukocyte transmigration in response to IL-1β while an anti–ICAM-1 mAb inhibited both leukocyte adhesion and transmigration. Interestingly, mAb 3C4 significantly suppressed IL-1β–induced neutrophil transmigration in PE-CAM-1 KO animals in the peritonitis model but not in the cremaster muscle. The findings provide direct evidence for the involvement of ICAM-2 in neutrophil transmigration in vivo, though this role appears to be stimulus specific. Furthermore, ICAM-2 appears capable of mediating PECAM-1–independent leukocyte transmigration.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Zhenling Zhang ◽  
Lijing Zhang ◽  
Qiuping Zhang ◽  
Bojia Liu ◽  
Fang Li ◽  
...  

Background. Intestinal barrier injury is an important contributor to many diseases. We previously found that heme oxygenase-1 (HO-1) and carbon monoxide (CO) protect the intestinal barrier. This study is aimed at elucidating the molecular mechanisms of HO-1/CO in barrier loss. Materials and Methods. We induced gut leakiness by injecting carbon tetrachloride (CCl4) to wildtype or intestinal HO-1-deficient mice. In addition, we administrated tumor necrosis factor-α (TNF-α) to cells with gain- or loss-of-HO-1 function. The effects of HO-1/CO maintaining intestinal barrier integrity were investigated in vivo and in vitro. Results. Cobalt protoporphyrin and CO-releasing molecule-2 alleviated colonic mucosal injury and TNF-α levels; upregulated tight junction (TJ) expression; and inhibited epithelial IκB-α degradation and phosphorylation, NF-κB p65 phosphorylation, long MLCK expression, and MLC-2 phosphorylation after administration of CCl4. Zinc protoporphyrin completely reversed these effects. These findings were further confirmed in vitro, using Caco-2 cells with gain- or loss-of-HO-1-function after TNF-α. Pretreated with JSH-23 (NF-κB inhibitor) or ML-7 (long MLCK inhibitor), HO-1 overexpression prevented TNF-α-induced TJ disruption, while HO-1 shRNA promoted TJ damage even in the presence of JSH-23 or ML-7, thus suggesting that HO-1 dependently protected intestinal barrier via the NF-κB p65/MLCK/p-MLC-2 pathway. Intestinal HO-1-deficient mice further demonstrated the effects of HO-1 in maintaining intestinal barrier integrity and its relative mechanisms. Alleviated hepatic fibrogenesis and serum ALT levels finally confirmed the clinical significance of HO-1/CO repairing barrier loss in liver injury. Conclusion. HO-1/CO maintains intestinal barrier integrity through the NF-κB/MLCK pathway. Therefore, the intestinal HO-1/CO-NF-κB/MLCK system is a potential therapeutic target for diseases with a leaky gut.


Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3228-3235 ◽  
Author(s):  
A. Zakrzewicz ◽  
M. Gräfe ◽  
D. Terbeek ◽  
M. Bongrazio ◽  
W. Auch-Schwelk ◽  
...  

Abstract To characterize L-selectin–dependent cell adhesion to human vascular endothelium, human cardiac microvascular endothelial cells (HCMEC) and human coronary endothelial cells (HCEC) were isolated from explanted human hearts. The adhesion behavior of human (NALM-6) and mouse (300.19) pre-B cells transfected with cDNA encoding for human L-selectin was compared with that of the respective nontransfected cells in a flow chamber in vitro. More than 80% of the adhesion to tumor necrosis factor-α (TNF-α)–stimulated HCMEC at shear stresses <2 dyne/cm2 was L-selectin dependent and could be equally well blocked by an anti–L-selectin antibody or a L-selectin-IgG-chimera. No L-selectin dependent adhesion to HCEC could be shown. The L-selectin dependent adhesion to HCMEC was insensitive to neuraminidase, but greatly inhibited by addition of NaClO3 , which inhibits posttranslational sulfation and remained elevated for at least 24 hours of stimulation. E-selectin dependent adhesion of HL60 cells to HCMEC was blocked by neuraminidase, but not by NaClO3 and returned to control levels within 18 hours of HCMEC stimulation. It is concluded that microvascular, but not macrovascular endothelial cells express TNF-α–inducible sulfated ligand(s) for L-selectin, which differ from known L-selectin ligands, because sialylation is not required. The prolonged time course of L-selectin dependent adhesion suggests a role in sustained leukocyte recruitment into inflammatory sites in vivo.


2001 ◽  
Vol 280 (2) ◽  
pp. G291-G297 ◽  
Author(s):  
Cameron W. Lush ◽  
Gediminas Cepinskas ◽  
William J. Sibbald ◽  
Peter R. Kvietys

In vitro, nitric oxide (NO) decreases leukocyte adhesion to endothelium by attenuating endothelial adhesion molecule expression. In vivo, lipopolysaccharide-induced leukocyte rolling and adhesion was greater in inducible NO synthase (iNOS)−/− mice than in wild-type mice. The objective of this study was to assess E- and P-selectin expression in the microvasculature of iNOS−/− and wild-type mice subjected to acute peritonitis by cecal ligation and perforation (CLP). E- and P-selectin expression were increased in various organs within the peritoneum of wild-type animals after CLP. This CLP-induced upregulation of E- and P-selectin was substantially reduced in iNOS−/− mice. Tissue myeloperoxidase (MPO) activity was increased to a greater extent in the gut of wild-type than in iNOS−/− mice subjected to CLP. In the lung, the reduced expression of E-selectin in iNOS−/− mice was not associated with a decrease in MPO. Our findings indicate that NO derived from iNOS plays an important role in sepsis-induced increase in selectin expression in the systemic and pulmonary circulation. However, in iNOS−/− mice, sepsis-induced leukocyte accumulation is affected in the gut but not in the lungs.


1997 ◽  
Vol 186 (12) ◽  
pp. 2051-2056 ◽  
Author(s):  
Mark M. Wurfel ◽  
Brian G. Monks ◽  
Robin R. Ingalls ◽  
Russell L. Dedrick ◽  
Russell Delude ◽  
...  

Gram-negative bacterial lipopolysaccharide (LPS) stimulates phagocytic leukocytes by interacting with the cell surface protein CD14. Cellular responses to LPS are markedly potentiated by the LPS-binding protein (LBP), a lipid-transfer protein that binds LPS aggregates and transfers LPS monomers to CD14. LBP also transfers LPS to lipoproteins, thereby promoting the neutralization of LPS. LBP present in normal plasma has been shown to enhance the LPS responsiveness of cells in vitro. The role of LBP in promoting LPS responsiveness in vivo was tested in LBP-deficient mice produced by gene targeting in embryonic stem cells. Whole blood from LBP-deficient animals was 1,000-fold less responsive to LPS as assessed by the release of tumor necrosis factor (TNF)-α. Blood from gene-targeted mice was devoid of immunoreactive LBP, essentially incapable of transferring LPS to CD14 in vitro, and failed to support cellular responses to LPS. These activities were restored by the addition of exogenous recombinant murine LBP to the plasma. Despite these striking in vitro findings, no significant differences in TNF-α levels were observed in plasma from wild-type and LBP-deficient mice injected with LPS. These data suggest the presence of an LBP-independent mechanism for responding to LPS. These LBP knockout mice may provide a tool for discovering the nature of the presumed second mechanism for transferring LPS to responsive cells.


1992 ◽  
Vol 1 (1) ◽  
pp. 49-54 ◽  
Author(s):  
W. M. S. C. Tamashiro ◽  
B. M. Tavares-Murta ◽  
F. Q. Cunha ◽  
M. C. Roque-Barreira ◽  
R. M. D. Nogueira ◽  
...  

Inhibitory effect upon neutrophil migration to the inflammatory focus was previously detected in the cell-free incubation fluid of lipopolysaccharide (LPS)-stimulated macrophage monolayers. In the present study we showed that the neutrophil recruitment inhibitory activity from this supernatant was mainly detected in a fraction (P2) obtained by gel filtration chromatography on Sephacryl S-300. P2 fraction was able to inhibit ‘in vivo’ neutrophil emigration induced by different inflammatory stimuli, but it did not affect ‘in vitro’ neutrophil chemotaxis induced by FMLP. When injected intravenously, P2 inhibited oedema induced by carrageenin or immunological stimulus but not the oedema induced by dextran, thus affecting cell-dependent inflammatory responses. It was observed that P2 also induced neutrophil migration when injected locally in peritoneal cavities. This activity was significantly reduced by pretreatment of the animals with dexamethasone. Cytokines, such as IL-8 and TNF-α that are known to exhibit inhibitory effect upon neutrophil migration, were not detected in P2 fraction by highly sensitive assays. Overall the results suggest the existence of a novel cytokine exhibiting ‘in vivo’ neutrophil inhibitory activity, referred as NRIF.


2012 ◽  
Vol 108 (10) ◽  
pp. 730-741 ◽  
Author(s):  
Judith I. Pagel ◽  
Marlene Tschernatsch ◽  
Markus Sperandio ◽  
Klaus T. Preissner ◽  
Silvia Fischer ◽  
...  

SummaryExtracellular RNA (eRNA), released from cells under conditions of injury or vascular disease, acts as potent prothrombotic factor and promotes vascular hyperpermeability related to oedema formation in vivo. In this study, we aimed to investigate the mechanism by which eRNA triggers inflammatory processes, particularly associated with different steps of leukocyte recruitment. Using intravital microscopy of murine cremaster muscle venules, eRNA (but not DNA) significantly induced leukocyte adhesion and transmigration in vivo, which was comparable in its effects to the function of tumour-necrosis-factor-α (TNF-α). In vitro, eRNA promoted adhesion and transmigration of monocytic cells on and across endothelial cell monolayers. eRNA-induced monocyte adhesion in vitro was mediated by activation of the vascular endothelial growth factor (VEGF)/VEGF-receptor-2 system and was abolished by neutralising antibodies against intercellular adhesion molecule-1 or the p2-inte-grin Mac-1. Additionally, eRNA induced the release of TNF-α from monocytic cells in a time- and concentration-dependent manner, which involved activation of TNF- α -converting enzyme (TACE) as well as the nuclear factor kB signalling machinery. In vivo, inhibiton of TACE significantly reduced eRNA-induced leukocyte adhesion. Our findings present evidence that eRNA in connection with tissue/vascular damage provokes a potent inflammatory response by inducing leukocyte recruitment and by mobilising proinflammatory cytokines from monocytes.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Francielli Maria de Souza Silva-Comar ◽  
Luiz Alexandre Marques Wiirzler ◽  
Saulo Euclides Silva-Filho ◽  
Raquel Kummer ◽  
Raissa Bocchi Pedroso ◽  
...  

Estragole, a chemical constituent of the essential oils of many aromatic plants, is used as flavoring in beverage and food industries.In vivoandin vitroexperimental assays have shown that EST has sedative, anticonvulsant, antioxidant, antimicrobial, and anesthetic activity. In this work, we evaluate the effect of EST on leukocyte behavior and phagocytic activity of macrophages. In the peritonitis model, EST (500 and 750 mg/kg) decreased the infiltration of peritoneal exudate leukocytes.In vitrochemotaxis assay showed that EST (3, 10, 30, and 60 μg/mL) inhibited neutrophil migration toward fMLP. In thein vivomicrocirculation assay, EST at doses of 250, 500, and 750 mg/kg significantly reduced the number of rolling and adherent leukocytes and at doses of 250 and 500 mg/kg decreased number of leukocyte migrated to perivascular tissue. The results showed that EST (3, 10, and 30 μg/mL) was able to stimulate the macrophages phagocytosis but only at concentration of 10 μg/mL promoted an increase in nitric oxide (NO) production. In conclusion, this study showed that EST had potential anti-inflammatory effects, likely by inhibiting leukocyte migration and by stimulating macrophages phagocytosis.


1999 ◽  
Vol 189 (6) ◽  
pp. 939-948 ◽  
Author(s):  
Ali Hafezi-Moghadam ◽  
Klaus Ley

The velocity of rolling leukocytes is thought to be determined by the expression of adhesion molecules and the prevailing wall shear stress. Here, we investigate whether rapid cleavage of L-selectin may be an additional physiologic regulatory parameter of leukocyte rolling. A unique protease in the membrane of leukocytes cleaves L-selectin after activation, resulting in L-selectin shedding. The hydroxamic acid–based metalloprotease inhibitor KD-IX-73-4 completely prevented L-selectin shedding in vitro and significantly decreased the rolling velocity of leukocytes in untreated wild-type C57BL/6 mice from 55 to 35 μm/s in vivo. When E-selectin was expressed on the endothelium (tumor necrosis factor [TNF]-α treatment 2.5–3 h before the experiment), rolling velocity was 4 μm/s and did not change after the application of KD-IX-73-4. However, KD-IX-73-4 decreased mean rolling velocity by 29% from 23 to 16 μm/s in E-selectin–deficient mice treated with TNF-α. The reduction of velocity caused by KD-IX-73-4 was immediate (&lt;5 s) after injection of KD-IX-73-4 as shown by a novel method using a local catheter. These results establish a role for L-selectin shedding in regulating leukocyte rolling velocity in vivo.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3919-3927 ◽  
Author(s):  
Jurgen Schymeinsky ◽  
Anca Sindrilaru ◽  
David Frommhold ◽  
Markus Sperandio ◽  
Ronald Gerstl ◽  
...  

Abstract Leukocyte adhesion via β2 integrins (CD11/CD18) activates the tyrosine kinase Syk. We found that Syk was enriched at the lamellipodium during N-formyl-Met-Leu-Phe–induced migration of neutrophil-like differentiated HL-60 cells. Here, Syk colocalized with Vav, a guanine nucleotide exchange factor for Rac and Cdc42. The enrichment of Syk at the lamellipodium and its colocalization with Vav were absent upon expression of a Syk kinase-dead mutant (Syk K402R) or a Syk mutant lacking the binding site of Vav (Syk Y348F). Live cell imaging revealed that both mutations resulted in excessive lamellipodium formation and severely compromised migration compared with control cells. Similar results were obtained upon down-regulation of Syk by RNA interference (RNAi) technique as well as in Syk–/– neutrophils from wild-type mice reconstituted with Syk–/– bone marrow. A pivotal role of Syk in vivo was demonstrated in the Arthus reaction, where neutrophil extravasation, edema formation, and hemorrhage were profoundly diminished in Syk–/– bone marrow chimeras compared with those in control animals. In the inflamed cremaster muscle, Syk–/– neutrophils revealed a defect in adhesion and migration. These findings indicate that Syk is critical for β2 integrin–mediated neutrophil migration in vitro and plays a fundamental role in neutrophil recruitment during the inflammatory response in vivo.


1998 ◽  
Vol 188 (6) ◽  
pp. 1029-1037 ◽  
Author(s):  
Andreas E. May ◽  
Sandip M. Kanse ◽  
Leif R. Lund ◽  
Roland H. Gisler ◽  
Beat A. Imhof ◽  
...  

The urokinase receptor (CD87; uPAR) is found in close association with β2 integrins on leukocytes. We studied the functional consequence of this association for leukocyte adhesion and migration. In vivo, the β2 integrin–dependent recruitment of leukocytes to the inflamed peritoneum of uPAR-deficient mice was significantly reduced as compared with wild-type animals. In vitro, β2 integrin–mediated adhesion of leukocytes to endothelium was lost upon removal of uPAR from the leukocyte surface by phosphatidyl-inositol–specific phospholipase C. Leukocyte adhesion was reconstituted when soluble intact uPAR, but not a truncated form lacking the uPA-binding domain, was allowed to reassociate with the cell surface. uPAR ligation with a monoclonal antibody induced adhesion of monocytic cells and neutrophils to vascular endothelium by six- to eightfold, whereas ligation with inactivated uPA significantly reduced cell-to-cell adhesion irrespective of the β2 integrin–stimulating pathway. These data indicate that β2 integrin–mediated leukocyte–endothelial cell interactions and recruitment to inflamed areas require the presence of uPAR and define a new phenotype for uPAR-deficient mice. Moreover, uPAR ligation differentially modulates leukocyte adhesion to endothelium and provides novel targets for therapeutic strategies in inflammation-related vascular pathologies.


Sign in / Sign up

Export Citation Format

Share Document