scholarly journals Rac1 links leading edge and uropod events through Rho and myosin activation during chemotaxis

Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2814-2820 ◽  
Author(s):  
Kersi N. Pestonjamasp ◽  
Carol Forster ◽  
Chunxiang Sun ◽  
Elisabeth M. Gardiner ◽  
Ben Bohl ◽  
...  

Abstract Chemotactic responsiveness is crucial to neutrophil recruitment to sites of infection. During chemotaxis, highly divergent cytoskeletal programs are executed at the leading and trailing edge of motile neutrophils. The Rho family of small GTPases plays a critical role in cell migration, and recent work has focused on elucidating the specific roles played by Rac1, Rac2, Cdc42, and Rho during cellular chemotaxis. Rac GTPases regulate actin polymerization and extension of the leading edge, whereas Rho GTPases control myosin-based contraction of the trailing edge. Rac and Rho signaling are thought to crosstalk with one another, and previous research has focused on mutual inhibition of Rac and Rho signaling during chemotaxis. Indeed, polarization of neutrophils has been proposed to involve the activity of a negative feedback system where Rac activation at the front of the cell inhibits local Rho activation, and vice versa. Using primary human neutrophils and neutrophils derived from a Rac1/Rac2-null transgenic mouse model, we demonstrate here that Rac1 (and not Rac2) is essential for Rho and myosin activation at the trailing edge to regulate uropod function. We conclude that Rac plays both positive and negative roles in the organization of the Rhomyosin “backness” program, thereby promoting stable polarity in chemotaxing neutrophils.

1999 ◽  
Vol 112 (13) ◽  
pp. 2069-2080 ◽  
Author(s):  
J. Mounier ◽  
V. Laurent ◽  
A. Hall ◽  
P. Fort ◽  
M.F. Carlier ◽  
...  

Shigella flexneri, an invasive bacterial pathogen, promotes formation of two cytoskeletal structures: the entry focus that mediates bacterial uptake into epithelial cells and the actin-comet tail that enables the bacteria to spread intracellularly. During the entry step, secretion of bacterial invasins causes a massive burst of subcortical actin polymerization leading the formation of localised membrane projections. Fusion of these membrane ruffles leads to bacterial internalization. Inside the cytoplasm, polar expression of the IcsA protein on the bacterial surface allows polymerization of actin filaments and their organization into an actin-comet tail leading to bacterial spread. The Rho family of small GTPases plays an essential role in the organization and regulation of cellular cytoskeletal structures (i.e. filopodia, lamellipodia, adherence plaques and intercellular junctions). We show here that induction of Shigella entry foci is controlled by the Cdc42, Rac and Rho GTPases, but not by RhoG. In contrast, actin-driven intracellular motility of Shigella does not require Rho GTPases. Therefore, Shigella appears to manipulate the epithelial cell cytoskeleton both by Rho GTPase-dependent and -independent processes.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 834-834
Author(s):  
Asako Itakura ◽  
Joseph E. Aslan ◽  
Branden T. Kusanto ◽  
Kevin G. Phillips ◽  
Robert H. Insall ◽  
...  

Abstract Abstract 834 Neutrophil chemotaxis is controlled by coordinated processes of directional sensing, polarization and motility. This study was designed to characterize the role of p21-activated kinases (PAKs) during the chemotaxis of human primary neutrophils. PAKs are known as effectors of the Rho GTPases Rac and Cdc42. It has been shown that PAK1 and PAK2 are strongly activated downstream of the f-Met-Leu-Phe (fMLP) receptor via Rac (Huang et al., MCB 1998). PAK1 is known to localize in lamellipodia at the leading edge of human neutrophils (Dharmawardhane et al., JLB 1999) and mediate persistent directional migration via Cdc42 in a neutrophil-like cell line (Li et al., Cell 2003). However, little is known about the specific role of PAK isoforms in spatial/temporal regulation of cytoskeletal dynamics in human neutrophils. Our data show that human neutrophils express PAK1, 2 and 4. Under an fMLP gradient, human neutrophils developed morphological polarity with a distinct leading edge and rear, and migrated up the fMLP gradient at the speed of 7.5 ± 0.56 μm/min. Inhibition of Rac or PI3K impaired directionality but did not significantly affect migration speed of chemotaxing neutrophils (6.3 ± 0.56 μm/min or 6.2 ± 0.85 μm/min, respectively). In contrast, neutrophils treated with the PAK inhibitor, PF3758309 (PF), displayed random migration, less polarization and reduced motility (3.1 ± 0.21 μm/min). These results suggest that PAK regulates neutrophil chemotaxis independently of the Rac-PI3K axis. The presence of PF did not abrogate intracellular Ca2+mobilization in fMLP-driven chemotactic condition. Instead, the decreased migratory ability by PAK inhibition was associated with multiple Ca2+ spikes. Immunofluorescence imaging shows that PAK2 but not PAK1, was phosphorylated and translocated from cytosol to actin-rich leading edge in the proximity to GTP-bound Rac within 3 min of fMLP stimulation. Notably, PF treatment resulted in partial neutrophil spreading and actin/myosin II translocation in the absence of extracellular stimuli, suggesting that basal level of PAK phosphorylation may be required for cytoskeletal integrity of resting neutrophils. Neutrophils pretreated with PF displayed less activation and translocation of PAK2 and Rac. In summary, our data demonstrate for the first time the distinct roles of PAK isoforms in human neutrophil morphological polarity and directional migration and suggest that PAK2 is activated downstream of fMLP receptor through Rho-family small GTPases. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 22 (24) ◽  
pp. 8721-8734 ◽  
Author(s):  
Takeshi Nakamura ◽  
Misako Komiya ◽  
Kiyoaki Sone ◽  
Eiji Hirose ◽  
Noriko Gotoh ◽  
...  

ABSTRACT Neurotrophins are key regulators of the fate and shape of neuronal cells and act as guidance cues for growth cones by remodeling the actin cytoskeleton. Actin dynamics is controlled by Rho GTPases. We identified a novel Rho GTPase-activating protein (Grit) for Rho/Rac/Cdc42 small GTPases. Grit was abundant in neuronal cells and directly interacted with TrkA, a high-affinity receptor for nerve growth factor (NGF). Another pool of Grit was recruited to the activated receptor tyrosine kinase through its binding to N-Shc and CrkL/Crk, adapter molecules downstream of activated receptor tyrosine kinases. Overexpression of the TrkA-binding region of Grit inhibited NGF-induced neurite elongation. Further, we found some tendency for neurite promotion in full-length Grit-overexpressing PC12 cells upon NGF stimulation. These results suggest that Grit, a novel TrkA-interacting protein, regulates neurite outgrowth by modulating the Rho family of small GTPases.


2000 ◽  
Vol 355 (1399) ◽  
pp. 965-970 ◽  
Author(s):  
Alan Hall ◽  
Catherine D. Nobes

The actin cytoskeleton plays a fundamental role in all eukaryotic cells—it is a major determinant of cell morphology and polarity and the assembly and disassembly of filamentous actin structures provides a driving force for dynamic processes such as cell motility, phagocytosis, growth cone guidance and cytokinesis. The ability to reorganize actin filaments is a fundamental property of embryonic cells during development; the shape changes accompanying gastrulation and dorsal closure, for example, are dependent on the plasticity of the actin cytoskeleton, while the ability of cells or cell extensions, such as axons, to migrate within the developing embryo requires rapid and spatially organized changes to the actin cytoskeleton in response to the external environment. W ork in mammalian cells over the last decade has demonstrated the central role played by the highly conserved Rho family of small GTPases in signal transduction pathways that link plasma membrane receptors to the organization of the actin cytoskeleton.


2019 ◽  
Author(s):  
J. Bui ◽  
D. E. Conway ◽  
R. L. Heise ◽  
S.H. Weinberg

ABSTRACTCell migration, a fundamental physiological process in which cells sense and move through their surrounding physical environment, plays a critical role in development and tissue formation, as well as pathological processes, such as cancer metastasis and wound healing. During cell migration, dynamics are governed by the bidirectional interplay between cell-generated mechanical forces and the activity of Rho GTPases, a family of small GTP-binding proteins that regulate actin cytoskeleton assembly and cellular contractility. These interactions are inherently more complex during the collective migration of mechanically coupled cells, due to the additional regulation of cell-cell junctional forces. In this study, we present a minimal modeling framework to simulate the interactions between mechanochemical signaling in individual cells and interactions with cell-cell junctional forces during collective cell migration. We find that migration of individual cells depends on the feedback between mechanical tension and Rho GTPase activity in a biphasic manner. During collective cell migration, waves of Rho GTPase activity mediate mechanical contraction/extension and thus synchronization throughout the tissue. Further, cell-cell junctional forces exhibit distinct spatial patterns during collective cell migration, with larger forces near the leading edge. Larger junctional force magnitudes are associated with faster collective cell migration and larger tissue size. Simulations of heterogeneous tissue migration exhibit a complex dependence on the properties of both leading and trailing cells. Computational predictions demonstrate that collective cell migration depends on both the emergent dynamics and interactions between cellular-level Rho GTPase activity and contractility, and multicellular-level junctional forces.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3523-3523
Author(s):  
Huzoor Akbar ◽  
James F. Johnson ◽  
David A. Williams ◽  
Yi Zheng

Abstract The Rac GTPases, members of the Ras related family of Rho GTPases, have been shown to be involved in the regulation of cell spreading, adhesion and actin cytoskeleton reorganization in hematopoietic cells (Roberts, A.W., et al. Immunity10: 183–196, 1999; Gu Y., et al. Science302: 445–449, 2003). Adhesion of platelets to vascular matrix containing fibrinogen or collagen is the first and a critical step that leads to platelet aggregation. The possibility that individual Rac GTPases may play a role in platelet activation was examined in this study. The Rac2 gene targeted (Rac2−/−) mice were used to investigate the contribution of Rac2 GTPase in platelet adhesion and aggregation. All experiments were conducted using an equal number (1–2 x 108/ml) of washed platelets from WT and Rac2−/− mice. Firstly, the role of Rac2 in platelet adhesion was examined by quantifying adhesion of platelets to fibrinogen coated wells. Platelets from Rac2−/−mice exhibited a 35% less adhesion to fibrinogen than platelets from WT mice. Secondly, binding of platelets to soluble fibrinogen was assessed by stimulating the platelets with ADP, collagen or phospholipase C (PLC) in the presence of Oregon Green conjugated fibrinogen followed by flow cytometry analysis. ADP-, PLC- and collagen-induced fibrinogen binding to platelets from Rac2−/−mice, as compared to platelets from WT mice, was decreased by 65%, 40% and 35%, respectively. Thirdly, platelet aggregation was monitored by an optical density method using a Chronolog Aggregometer. Agonists that induce aggregation responses via specific receptors for example thrombin, collagen and U46619 (a stable analog of thromboxane A2) as well as agonists that bypass receptors and directly activate protein kinase C by generating diacylglycerol (e.g. PLC from Clostridium perfringens) or by mimicking diacylglycerol (e.g. phorbol 12-myristate 13-acetate, PMA) were used in this study. At threshold concentrations, thrombin (0.04 U/ml), collagen (4 μg/ml), U46619 (0.5 μM) and PLC (0.04 U/ml) all elicited a slower onset of aggregation, as depicted by a prolonged shape change phase, in platelets from Rac2−/−than platelets from WT mice. Aggregation responses induced by thrombin, collagen and U46619 were all diminished in platelets from Rac2−/−mice as compared to platelets from WT mice. Moreover, platelets from Rac2−/−, but not from WT, mice failed to exhibit irreversible aggregation even when challenged with higher concentrations of U46619 (10 μM) or collagen (8 μg/ml). Platelet aggregation responses induced by PLC and PMA, agents that bypass receptors, were also decreased in platelets from Rac2−/−mice than in platelets from WT mice. These data lead us to suggest that Rac2 plays a critical role not only in platelet adhesion to fibrinogen, a step necessary for subsequent platelet aggregation, but also in sustenance and perpetuation of platelet aggregation. Furthermore, Rac2 appears to be involved in regulation of agonist-receptor mediated as well as direct, receptor-independent, activation of platelets.


2015 ◽  
Vol 212 (2) ◽  
pp. 267-280 ◽  
Author(s):  
Xiaowen Liu ◽  
Tao Yang ◽  
Koya Suzuki ◽  
Sachiko Tsukita ◽  
Masaru Ishii ◽  
...  

Neutrophils respond to invading bacteria by adopting a polarized morphology, migrating in the correct direction, and engulfing the bacteria. How neutrophils establish and precisely orient this polarity toward pathogens remains unclear. Here we report that in resting neutrophils, the ERM (ezrin, radixin, and moesin) protein moesin in its active form (phosphorylated and membrane bound) prevented cell polarization by inhibiting the small GTPases Rac, Rho, and Cdc42. Attractant-induced activation of myosin phosphatase deactivated moesin at the prospective leading edge to break symmetry and establish polarity. Subsequent translocation of moesin to the trailing edge confined the formation of a prominent pseudopod directed toward pathogens and prevented secondary pseudopod formation in other directions. Therefore, both moesin-mediated inhibition and its localized deactivation by myosin phosphatase are essential for neutrophil polarization and effective neutrophil tracking of pathogens.


2003 ◽  
Vol 161 (5) ◽  
pp. 845-851 ◽  
Author(s):  
Torsten Wittmann ◽  
Gary M. Bokoch ◽  
Clare M. Waterman-Storer

Actin in migrating cells is regulated by Rho GTPases. However, Rho proteins might also affect microtubules (MTs). Here, we used time-lapse microscopy of PtK1 cells to examine MT regulation downstream of Rac1. In these cells, “pioneer” MTs growing into leading-edge protrusions exhibited a decreased catastrophe frequency and an increased time in growth as compared with MTs further from the leading edge. Constitutively active Rac1(Q61L) promoted pioneer behavior in most MTs, whereas dominant-negative Rac1(T17N) eliminated pioneer MTs, indicating that Rac1 is a regulator of MT dynamics in vivo. Rac1(Q61L) also enhanced MT turnover through stimulation of MT retrograde flow and breakage. Inhibition of p21-activated kinases (Paks), downstream effectors of Rac1, inhibited Rac1(Q61L)-induced MT growth and retrograde flow. In addition, Rac1(Q61L) promoted lamellipodial actin polymerization and Pak-dependent retrograde flow. Together, these results indicate coordinated regulation of the two cytoskeletal systems in the leading edge of migrating cells.


2019 ◽  
Author(s):  
Georgi Dimchev ◽  
Behnam Amiri ◽  
Ashley C. Humphries ◽  
Matthias Schaks ◽  
Vanessa Dimchev ◽  
...  

ABSTRACTEfficient migration on adhesive surfaces involves the protrusion of lamellipodial actin networks and their subsequent stabilization by nascent adhesions. The actin binding protein lamellipodin (Lpd) is thought to play a critical role in lamellipodium protrusion, by delivering Ena/VASP proteins onto the growing plus ends of actin filaments and by interacting with the WAVE regulatory complex (WRC), an activator of the Arp2/3 complex, at the leading edge. Using B16-F1 melanoma cell lines, we demonstrate that genetic ablation of Lpd compromises protrusion efficiency and coincident cell migration without altering essential parameters of lamellipodia, including their maximal rate of forward advancement and actin polymerization. We also confirmed lamellipodia and migration phenotypes with CRISPR/Cas9-mediated Lpd knockout Rat2 fibroblasts, excluding cell type-specific effects. Moreover, computer-aided analysis of cell edge morphodynamics on B16-F1 cell lamellipodia revealed that loss of Lpd correlates with reduced temporal protrusion maintenance as a prerequisite of nascent adhesion formation. We conclude that Lpd optimizes protrusion and nascent adhesion formation by counteracting frequent, chaotic retraction and membrane ruffling.Summary statementWe describe how genetic ablation of the prominent actin- and VASP-binding protein lamellipodin combined with software-aided protrusion analysis uncovers mechanistic insights into its cellular function during cell migration.


2018 ◽  
Author(s):  
Paul M. Müller ◽  
Juliane Rademacher ◽  
Richard D. Bagshaw ◽  
Keziban M. Alp ◽  
Girolamo Giudice ◽  
...  

AbstractRho GTPases control cell morphogenesis and thus fundamental processes in all eukaryotes. They are regulated by 145 RhoGEF and RhoGAP multi-domain proteins in humans. How the Rho signaling system is organized to generate localized responses in cells and prevent their spreading is not understood. Here, we systematically characterized the substrate specificities, localization and interactome of the RhoGEFs/RhoGAPs and revealed their critical role in contextualizing and spatially delimiting Rho signaling. They localize to multiple compartments providing positional information, are extensively interconnected to jointly coordinate their signaling networks and are widely autoinhibited to remain sensitive to local activation. RhoGAPs exhibit lower substrate specificity than RhoGEFs and may contribute to preserving Rho activity gradients. Our approach led us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling a Cdc42/RhoA crosstalk. The spatial organization of Rho signaling thus differs from other small GTPases and expands the repertoire of mechanisms governing localized signaling activity.


Sign in / Sign up

Export Citation Format

Share Document