scholarly journals Molecular events contributing to cell death in malignant human hematopoietic cells elicited by an IgG3-avidin fusion protein targeting the transferrin receptor

Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2745-2754 ◽  
Author(s):  
Patrick P. Ng ◽  
Gustavo Helguera ◽  
Tracy R. Daniels ◽  
Simon Z. Lomas ◽  
Jose A. Rodriguez ◽  
...  

AbstractWe have previously reported that an anti-human transferrin receptor IgG3-avidin fusion protein (anti-hTfR IgG3-Av) inhibits the proliferation of an erythroleukemia-cell line. We have now found that anti-hTfR IgG3-Av also inhibits the proliferation of additional human malignant B and plasma cells. Anti-hTfR IgG3-Av induces internalization and rapid degradation of the TfR. These events can be reproduced in cells treated with anti-hTfR IgG3 cross-linked with a secondary Ab, suggesting that they result from increased TfR cross-linking. Confocal microscopy of cells treated with anti-hTfR IgG3-Av shows that the TfR is directed to an intracellular compartment expressing the lysosomal marker LAMP-1. The degradation of TfR is partially blocked by cysteine protease inhibitors. Furthermore, cells treated with anti-hTfR IgG3-Av exhibit mitochondrial depolarization and activation of caspases 9, 8, and 3. The mitochondrial damage and cell death can be prevented by iron supplementation, but cannot be fully blocked by a pan-caspase inhibitor. These results suggest that anti-hTfR IgG3-Av induces lethal iron deprivation, but the resulting cell death does not solely depend on caspase activation. This report provides insights into the mechanism of cell death induced by anti-TfR Abs such as anti-hTfR IgG3-Av, a molecule that may be useful in the treatment of B-cell malignancies such as multiple myeloma.

2013 ◽  
Vol 27 (1) ◽  
pp. 220-231 ◽  
Author(s):  
Tracy R. Daniels-Wells ◽  
Gustavo Helguera ◽  
José A. Rodríguez ◽  
Lai Sum Leoh ◽  
Michael A. Erb ◽  
...  

2007 ◽  
Vol 124 (1-2) ◽  
pp. 35-42 ◽  
Author(s):  
José A. Rodríguez ◽  
Gustavo Helguera ◽  
Tracy R. Daniels ◽  
Isabel I. Neacato ◽  
Héctor E. López-Valdés ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4204-4204
Author(s):  
Elizabeth Ortiz-Sanchez ◽  
Tracy R. Daniels ◽  
Gustavo Helguera ◽  
Otoniel Martinez-Maza ◽  
Benjamin Bonavida ◽  
...  

Abstract The human transferrin receptor (hTfR) is a cell surface glycoprotein responsible for iron uptake, which is required for several cellular reactions including respiration and DNA synthesis. In cancer cells, the hTfR is over-expressed due to the high amount of iron required to maintain the uncontrolled cell proliferation. This makes the cancer cells highly sensitive to death induced by iron starvation. In addition to iron uptake, the TfR may also play a role in cell growth signaling. We have developed a mouse/human chimeric anti-human transferrin receptor IgG3-avidin fusion protein (anti-hTfR IgG3-Av) that induces cell death in human malignant B-cells such as IM9 and ARH-77 (B lymphoblastoid cell lines). The TfR is constitutively internalized and recycled back to cell surface. Anti-hTfR IgG3-Av binding to the hTfR disrupts this cycling and redirects the hTfR to lysosomal compartments where hTfR is presumably degraded. This promotes a state of iron starvation that induces cancer cell death by apoptosis, which can be blocked by iron supplementation. However, the cytotoxic effect induced by anti-hTfR IgG3-Av was minor or absent in U266 (multiple myeloma cell line). Gambogic acid (GA), a natural compound from traditional Chinese medicine, was previously shown to bind the TfR, blocking its internalization and inducing apoptosis in an iron independent manner in Jurkat (acute T cell leukemia) and HL-60 (acute promyelocytic leukemia) cell lines. The goal of the present work is to explore the cytotoxic effect of anti-hTfR IgG3-Av and GA alone or in combination in a panel of hematopoietic malignant cell lines and understand the relevance of iron in the cytotoxicity. We demonstrate that GA inhibits the proliferation of Ramos, HS-sultan, Raji (Burkitt’s lymphomas), IM9, U266, Jurkat and HL-60 cell lines. Our results showed that 0.3 μM GA at 24 h decreases cell proliferation by 70–90%, and 95–99.9% at 48 h, in all cell lines tested. We also observed morphological changes in the cells treated with GA consistent with cell death. Importantly, using ferric ammonium citrate as an iron supplement, we confirmed that the cytotoxic effect of GA in the cell lines tested is iron independent. This work also demonstrates, for the first time, that anti-hTfR IgG3-Av has a potent cytotoxic effect in the panel of leukemia and lymphoma cell lines tested above. Additionally, we confirmed that anti-hTfR IgG3-Av induces cell death in an iron dependent manner. Since both anti-hTfR IgG3-Av and GA target the TfR, we tested the effect of the combination of these components. Despite a potential antagonistic effect due to the fact that anti-hTfR IgG3-Av decreases the cell surface levels of the hTfR and GA blocks its internalization, the combination of anti-hTfR IgG3-Av plus GA enhanced the cytotoxicity, including cases of synergy, of either one alone in the cell lines tested. Studies are currently underway to understand the role of iron in the enhancement of toxicity. Our results suggest that anti-hTfR IgG3-Av and GA, alone or in combination, could be an effective treatment option for various hematopoietic malignancies.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3476-3476
Author(s):  
Gustavo Helguera ◽  
Jose A. Rodriguez ◽  
Tracy R. Daniels ◽  
David Casero Diaz-Cano ◽  
Matteo Pellegrini ◽  
...  

Abstract We have previously developed an anti-human transferrin receptor IgG3-avidin fusion protein (anti-hTfR IgG3-Av) that exhibits a potent anti-proliferative/pro-apoptotic activity against malignant B cells. This effect has been attributed, at least in part, to the internalization and rapid degradation of the hTfR by anti-hTfR IgG3-Av, resulting in lethal iron deprivation. However, in a panel of eight malignant B cells treated with anti-hTfR IgG3-Av we observed varying levels of sensitivity among the cell lines, where IM-9 (a human lymphoblastoid cell line) showed high sensitivity, while U266 (a human multiple myeloma cell line) was significantly resistant; although both cell lines express high levels of hTfR. To elucidate the mechanisms behind resistance and sensitivity of these human malignant B cells we conducted a global gene expression comparison treating the two cell lines for 0, 1, 3, 9, and 24 hours with anti-hTfR IgG3-Av or buffer control. Samples of total RNA were collected in duplicate at each time point and gene expression levels analyzed using HumanRef-8 v2 Expression BeadChips (Illumina Inc. San Diego, CA). Microarray data were preprocessed using quantile normalization and the difference in levels of gene expression was established using Bayesian statistics. Out of 8,095 array probes detected at time zero in both IM-9 and U266 cell lines, 167 had a greater than four-fold significant difference (regularized bayesian t-test p<0.05). With the genes selected by this global comparison, we performed a gene ontology analysis to identify genes associated with functional processes that may be involved in the differential sensitivity to anti-hTfR IgG3-Av. We found that genes facilitating apoptotic signaling through RAS, MAPK, and P53 (such as PIK3CD and CBLB) were expressed at significantly higher levels in IM-9 compared to U266, while genes involved in cell cycle including the cyclin-dependent growth regulator CDKN2C and a number of core histones were more highly expressed in U266 compared to IM-9. Of all the genes present in both cell lines, a time course study of 24 hour treatment with anti-hTfR IgG3-Av identified 74 genes in IM-9 cells and 10 genes in U266 cells with significant changes (p<0.05) at greater than 1.5-fold different expression levels compared to buffer control treated cells. IM-9 cells treated with anti-hTfR IgG3-Av showed increased expression of a number of apoptosis related genes including GADD45A, IKIP, DDB2, and TP53I3 at 24 hours. In contrast, U266 cells treated with anti-hTfR IgG3-Av showed decreased expression of genes involved in apoptosis induction and cell death such as PLEKHF1, OKL38, and CDC14B. Although further studies are needed to validate the expression changes, these results illustrate the complexity of the mechanism responsible of cell death induced by anti-hTfR IgG3-Av, and suggest that the molecular pathway involving p53 may be associated with cell death in the sensitive cell line. These studies are expected to pave the way to fully elucidate the mechanisms responsible for cell death induced by anti-hTfR IgG3-Av and the identification of a genetic signature responsible for resistance to this therapeutic.


Structure ◽  
1998 ◽  
Vol 6 (10) ◽  
pp. 1235-1243 ◽  
Author(s):  
Hendrik Fuchs ◽  
Uwe Lücken ◽  
Rudolf Tauber ◽  
Andreas Engel ◽  
Reinhard Geßner

Sign in / Sign up

Export Citation Format

Share Document