scholarly journals Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins

Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 3229-3235 ◽  
Author(s):  
Kotaro Takeda ◽  
Hector L. Aguila ◽  
Nehal S. Parikh ◽  
Xiping Li ◽  
Katie Lamothe ◽  
...  

Abstract Polycythemia is often associated with erythropoietin (EPO) overexpression and defective oxygen sensing. In normal cells, intracellular oxygen concentrations are directly sensed by prolyl hydroxylase domain (PHD)–containing proteins, which tag hypoxia-inducible factor (HIF) α subunits for polyubiquitination and proteasomal degradation by oxygen-dependent prolyl hydroxylation. Here we show that different PHD isoforms differentially regulate HIF-α stability in the adult liver and kidney and suppress Epo expression and erythropoiesis through distinct mechanisms. Although Phd1−/− or Phd3−/− mice had no apparent defects, double knockout of Phd1 and Phd3 led to moderate erythrocytosis. HIF-2α, which is known to activate Epo expression, accumulated in the liver. In adult mice deficient for PHD2, the prototypic Epo transcriptional activator HIF-1α accumulated in both the kidney and liver. Elevated HIF-1α levels were associated with dramatically increased concentrations of both Epo mRNA in the kidney and Epo protein in the serum, which led to severe erythrocytosis. In contrast, heterozygous mutation of Phd2 had no detectable effects on blood homeostasis. These findings suggest that PHD1/3 double deficiency leads to erythrocytosis partly by activating the hepatic HIF-2α/Epo pathway, whereas PHD2 deficiency leads to erythrocytosis by activating the renal Epo pathway.

Development ◽  
2021 ◽  
Vol 148 (23) ◽  
Author(s):  
Yida Jiang ◽  
Li-Juan Duan ◽  
Guo-Hua Fong

ABSTRACT Under normoxia, hypoxia inducible factor (HIF) α subunits are hydroxylated by PHDs (prolyl hydroxylase domain proteins) and subsequently undergo polyubiquitylation and degradation. Normal embryogenesis occurs under hypoxia, which suppresses PHD activities and allows HIFα to stabilize and regulate development. In this Primer, we explain molecular mechanisms of the oxygen-sensing pathway, summarize HIF-regulated downstream events, discuss loss-of-function phenotypes primarily in mouse development, and highlight clinical relevance to angiogenesis and tissue repair.


2008 ◽  
Vol 16 (7) ◽  
pp. 1227-1234 ◽  
Author(s):  
Shourong Wu ◽  
Nobuhiro Nishiyama ◽  
Mitsunobu R Kano ◽  
Yasuyuki Morishita ◽  
Kohei Miyazono ◽  
...  

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Toshihiro Ichiki

Background: Prolyl hydroxylase domain-containing protein (PHD) mediates hydroxylation of hypoxia-inducible factor (HIF)-1α and thereby induces proteasomal degradation of HIF-1α. Inhibition of PHD by hypoxia or hypoxia mimetics such as cobalt chloride (CoCl2) stabilizes HIF-1 and increases the expression of target genes such as vascular endothelial growth factor (VEGF). Although hypoxia activates the systemic renin angiotensin system (RAS), the role of PHD in regulating RAS remains unknown. We examined the effect of PHD inhibition on the expression of angiotensin (Ang) II type 1 receptor (AT1R) and its signaling. Methods and Results: Hypoxia (1% O2), CoCl2 (100-300 μmol/L), and dimethyloxalylglycine (0.25-1.0 mmol/L), all known to inhibit PHD, reduced AT1R expression by 37.7±7.6, 39.6±8.4-69.7±9.9, and 13.4±6.1-25.2±7.0%, respectively (p<0.01) in cultured vascular smooth muscle cell. The same stimuli increased the expression of nuclear HIF-1α and VEGF (p<0.05), suggesting that PHD activity is inhibited. Knockdown of PHD2, a major isoform of PHDs, by RNA interference also reduced AT1R expression by 55.3±6.0% (p<0.01). CoCl2 decreased AT1R mRNA through transcriptional and posttranscriptional mechanisms (p<0.01 and <0.05, respectively). CoCl2 and PHD2 knockdown diminished Ang II-induced ERK phosphorylation (P<0.01). Over-expression of the constitutively active HIF-1α did not impact the AT1R gene promoter activity. Oral administration of CoCl2 (14 mg/kg/day) to C57BL/6J mice receiving Ang II infusion (490 ng/kg/min) for 4 weeks significantly reduced the expression of AT1R in the aorta by 60.9±11.3% (p<0.05) and attenuated coronary perivascular fibrosis by 85% (p<0.01) without affecting blood pressure. However, CoCl2 did not affect Ang II-induced renal interstitial fibrosis. Conclusion: PHD inhibition downregulates AT1R expression independently of HIF-1α, reduces the cellular response to Ang II, and attenuates profibrotic effect of Ang II on the coronary arteries. PHD inhibition may be beneficial for the treatment of cardiovascular diseases, in which activation of RAS plays a critical role.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Lihong Fan ◽  
Jia Li ◽  
Zefeng Yu ◽  
Xiaoqian Dang ◽  
Kunzheng Wang

Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators that play crucial roles in angiogenesis, erythropoiesis, energy metabolism, and cell fate decisions. The group of enzymes that can catalyse the hydroxylation reaction of HIF-1 is prolyl hydroxylase domain proteins (PHDs). PHD inhibitors (PHIs) activate the HIF pathway by preventing degradation of HIF-αvia inhibiting PHDs. Osteogenesis and angiogenesis are tightly coupled during bone repair and regeneration. Numerous studies suggest that HIFs and their target gene, vascular endothelial growth factor (VEGF), are critical regulators of angiogenic-osteogenic coupling. In this brief perspective, we review current studies about the HIF pathway and its role in bone repair and regeneration, as well as the cellular and molecular mechanisms involved. Additionally, we briefly discuss the therapeutic manipulation of HIFs and VEGF in bone repair and bone tumours. This review will expand our knowledge of biology of HIFs, PHDs, PHD inhibitors, and bone regeneration, and it may also aid the design of novel therapies for accelerating bone repair and regeneration or inhibiting bone tumours.


PLoS ONE ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. e11241 ◽  
Author(s):  
Francesca Spinella ◽  
Laura Rosanò ◽  
Martina Del Duca ◽  
Valeriana Di Castro ◽  
Maria Rita Nicotra ◽  
...  

2021 ◽  
Vol 118 (35) ◽  
pp. e2107673118
Author(s):  
Chunyi Liu ◽  
Thomas Jursa ◽  
Michael Aschner ◽  
Donald R. Smith ◽  
Somshuvra Mukhopadhyay

Manganese (Mn) is an essential metal that induces incurable parkinsonism at elevated levels. However, unlike other essential metals, mechanisms that regulate mammalian Mn homeostasis are poorly understood, which has limited therapeutic development. Here, we discovered that the exposure of mice to a translationally relevant oral Mn regimen up-regulated expression of SLC30A10, a critical Mn efflux transporter, in the liver and intestines. Mechanistic studies in cell culture, including primary human hepatocytes, revealed that 1) elevated Mn transcriptionally up-regulated SLC30A10, 2) a hypoxia response element in the SLC30A10 promoter was necessary, 3) the transcriptional activities of hypoxia-inducible factor (HIF) 1 or HIF2 were required and sufficient for the SLC30A10 response, 4) elevated Mn activated HIF1/HIF2 by blocking the prolyl hydroxylation of HIF proteins necessary for their degradation, and 5) blocking the Mn-induced up-regulation of SLC30A10 increased intracellular Mn levels and enhanced Mn toxicity. Finally, prolyl hydroxylase inhibitors that stabilize HIF proteins and are in advanced clinical trials for other diseases reduced intracellular Mn levels and afforded cellular protection against Mn toxicity and also ameliorated the in vivo Mn-induced neuromotor deficits in mice. These findings define a fundamental homeostatic protective response to Mn toxicity—elevated Mn levels activate HIF1 and HIF2 to up-regulate SLC30A10, which in turn reduces cellular and organismal Mn levels, and further indicate that it may be possible to repurpose prolyl hydroxylase inhibitors for the management of Mn neurotoxicity.


Sign in / Sign up

Export Citation Format

Share Document