scholarly journals Long-term expansion of effector/memory Vδ2− γδ T cells is a specific blood signature of CMV infection

Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1317-1324 ◽  
Author(s):  
Vincent Pitard ◽  
David Roumanes ◽  
Xavier Lafarge ◽  
Lionel Couzi ◽  
Isabelle Garrigue ◽  
...  

Abstract The ability of human γδ T cells to develop immunologic memory is still a matter of debate. We previously demonstrated the involvement of Vδ2− γδ T lymphocytes in the response of immunosuppressed organ recipients to cytomegalovirus (CMV). Here, we demonstrate their ability to mount an adaptive immune response to CMV in immunocompetent subjects. Vδ2− γδ T-cell peripheral blood numbers, repertoire restriction, and cytotoxicity against CMV-infected fibroblasts were markedly increased in CMV-seropositive, compared with CMV-seronegative, healthy persons. Whereas Vδ2− γδ T cells were found as naive cells in CMV− patients, they virtually all exhibited the cytotoxic effector/memory phenotype in CMV+ patients, which is also observed in transplanted patients challenged with CMV. This long-term complete remodeling of the Vδ2− γδ T-cell population by CMV predicts their ability to exhibit an adaptive anti-CMV immune response. Consistent with this, we observed that the secondary response to CMV was associated with a faster γδ T-cell expansion and a better resolution of infection than the primary response. In conclusion, the increased level of effector-memory Vδ2− γδ T cells in the peripheral blood is a specific signature of an adaptive immune response to CMV infection of both immunocompetent and immunosuppressed patients.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ahmed Gaballa ◽  
Lucas C. M. Arruda ◽  
Emelie Rådestad ◽  
Michael Uhlin

The role of gamma delta (γδ) T cells in human cytomegalovirus (HCMV) immune surveillance has been the focus of research interest for years. Recent reports have shown a substantial clonal proliferation of γδ T cells in response to HCMV, shedding light on the adaptive immune response of γδ T cells. Nevertheless, most efforts have focused on Vδ2negγδ T cell subset while less attention has been given to investigate other less common γδ T cell subsets. In this regard, a distinct subpopulation of γδ T cells that expresses the CD8 coreceptor (CD8+γδ T cells) has not been thoroughly explored. Whether it is implicated in HCMV response and its ability to generate adaptive response has not been thoroughly investigated. In this study, we combined flow cytometry and immune sequencing of the TCR γ-chain (TRG) to analyze in-depth bone marrow (BM) graft γδ T cells from CMV seropositive (CMV+) and CMV seronegative (CMV-) donors. We showed that the frequency of CD8+γδ T cells was significantly higher in CMV+ grafts compared to CMV- grafts (P<0.001). Further characterization revealed that CD8+γδ T cells from CMV+ grafts express Vγ9- and preferentially differentiated from a naive to terminal effector memory phenotype (CD27low/-CD45RO-). In line with these findings, TRG immune sequencing revealed clonal focusing and reduced usage of the Vγ9/JP gene segment in a CMV+ graft. Furthermore, CD8+γδ T cells showed an enhanced response to TCR/CD3 and cytokine stimulation in contrast to CD8-γδ T cells. We conclude that γδ T cells in BM grafts are reshaped by donor CMV serostatus and highlight the potential adaptive role of CD8+γδ T cells in HCMV immune response.


2021 ◽  
Author(s):  
Aline Teixeira ◽  
Alexandria Gillespie ◽  
Alehegne Yirsaw ◽  
Emily Britton ◽  
Janice Telfer ◽  
...  

Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component for optimization of vaccine strategies. Bovine γδ T cells proliferate and produce IFN-γ in response to vaccination with inactivated leptospires and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identified two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ γδ T cells respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.


Author(s):  
Hannah Kaminski ◽  
Coline Ménard ◽  
Bouchra El Hayani ◽  
And-Nan Adjibabi ◽  
Gabriel Marsères ◽  
...  

Abstract Cytomegalovirus (CMV) is a major infectious cause of death and disease after transplantation. We have previously demonstrated that the tissue-associated adaptive Vδ2neg γδ T cells are key effectors responding to CMV and associated with recovery, contrasting with their innatelike circulating counterparts, the Vγ9posVδ2pos T cells that respond to phosphoantigens but not to CMV. A third Vγ9negVδ2pos subgroup with adaptive functions has been described in adults. In the current study, we demonstrate that these Vγ9negVδ2pos T cells are also components of the CMV immune response while presenting with distinct characteristics from Vδ2neg γδ T cells. In a cohort of kidney transplant recipients, CMV seropositivity was the unique clinical parameter associated with Vγ9negVδ2pos T-cell expansion and differentiation. Extensive phenotyping demonstrated their substantial cytotoxic potential and activation during acute CMV primary infection or reinfection. In vitro, Vγ9negVδ2pos T cells responded specifically to CMV-infected cells in a T-cell receptor–dependent manner and through strong interferon γ production. Finally, Vγ9negVδ2pos T cells were the only γδ T-cell subset in which expansion was tightly correlated with the severity of CMV disease. To conclude, our results identify a new player in the immune response against CMV and open interesting clinical perspectives for using Vγ9negVδ2pos T cells as an immune marker for CMV disease severity in immunocompromised patients.


2008 ◽  
Vol 31 (9) ◽  
pp. 896-905 ◽  
Author(s):  
Karin Schilbach ◽  
Klaus Frommer ◽  
Sybille Meier ◽  
Rupert Handgretinger ◽  
Matthias Eyrich

Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1027
Author(s):  
Nima Taefehshokr ◽  
Sina Taefehshokr ◽  
Bryan Heit

The current coronavirus disease 2019 (COVID-19) pandemic, a disease caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), was first identified in December 2019 in China, and has led to thousands of mortalities globally each day. While the innate immune response serves as the first line of defense, viral clearance requires activation of adaptive immunity, which employs B and T cells to provide sanitizing immunity. SARS-CoV-2 has a potent arsenal of mechanisms used to counter this adaptive immune response through processes, such as T cells depletion and T cell exhaustion. These phenomena are most often observed in severe SARS-CoV-2 patients, pointing towards a link between T cell function and disease severity. Moreover, neutralizing antibody titers and memory B cell responses may be short lived in many SARS-CoV-2 patients, potentially exposing these patients to re-infection. In this review, we discuss our current understanding of B and T cells immune responses and activity in SARS-CoV-2 pathogenesis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mariana Guerra-Maupome ◽  
Jodi L. McGill

Abstract The Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine is administered parenterally to infants and young children to prevent tuberculosis (TB) infection. However, the protection induced by BCG is highly variable and the vaccine does not prevent pulmonary TB, the most common form of the illness. Until improved TB vaccines are available, it is crucial to use BCG in a manner which ensures optimal vaccine performance. Immunization directly to the respiratory mucosa has been shown to promote greater protection from TB in animal models. γδ T cells play a major role in host defense at mucosal sites and are known to respond robustly to mycobacterial infection. Their positioning in the respiratory mucosa ensures their engagement in the response to aerosolized TB vaccination. However, our understanding of the effect of respiratory BCG vaccination on γδ T cell responses in the lung is unknown. In this study, we used a calf model to investigate the immunogenicity of aerosol BCG vaccination, and the phenotypic profile of peripheral and mucosal γδ T cells responding to vaccination. We observed robust local and systemic M. bovis-specific IFN-γ and IL-17 production by both γδ and CD4 T cells. Importantly, BCG vaccination induced effector and memory cell differentiation of γδ T cells in both the lower airways and peripheral blood, with accumulation of a large proportion of effector memory γδ T cells in both compartments. Our results demonstrate the potential of the neonatal calf model to evaluate TB vaccine candidates that are to be administered via the respiratory tract, and suggest that aerosol immunization is a promising strategy for engaging γδ T cells in vaccine-induced immunity against TB.


2011 ◽  
Vol 79 (10) ◽  
pp. 3940-3946 ◽  
Author(s):  
Cuixia Shi ◽  
Bikash Sahay ◽  
Jennifer Q. Russell ◽  
Karen A. Fortner ◽  
Nicholas Hardin ◽  
...  

ABSTRACTLittle is known regarding the function of γδ T cells, although they accumulate at sites of inflammation in infections and autoimmune disorders. We previously observed that γδ T cellsin vitroare activated byBorrelia burgdorferiin a TLR2-dependent manner. We now observe that the activated γδ T cells can in turn stimulate dendritic cellsin vitroto produce cytokines and chemokines that are important for the adaptive immune response. This suggested thatin vivoγδ T cells may assist in activating the adaptive immune response. We examined this possibilityin vivoand observed that γδ T cells are activated and expand in number duringBorreliainfection, and this was reduced in the absence of TLR2. Furthermore, in the absence of γδ T cells, there was a significantly blunted response of adaptive immunity, as reflected in reduced expansion of T and B cells and reduced serum levels of anti-Borreliaantibodies, cytokines, and chemokines. This paralleled a greaterBorreliaburden in γδ-deficient mice as well as more cardiac inflammation. These findings are consistent with a model of γδ T cells functioning to promote the adaptive immune response during infection.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 363-363 ◽  
Author(s):  
Tae Hae Han ◽  
Yucheng Tang ◽  
Yeon Hee Park ◽  
Jonathan Maynard ◽  
Pingchuan Li ◽  
...  

Abstract Individuals of advanced chronological age exhibit an impaired immune response to vaccines. This may be due to a reduction in the ratio of antigen naïve/memory CD4 and CD8 T cells and acquisition of functional defects in activated “helper” CD4 T cells (eg diminished CD40 ligand (CD40L) expression) during the aging process. The absence of the CD40L on activated CD4 helper T cells reduces the magnitude of expansion of antigen specific T and B cells induced by vaccination. In order to circumvent this defective response to vaccines among individuals in the fifth and sixth decades of life, our laboratory has developed an adenoviral vector (Ad-sig-TAA/ecdCD40L) vaccine which is designed to overcome the absence of CD40L expression in activated CD4 helper T cells in older individuals. The subcutaneous (sc) injection of this vector leads to the release of a fusion protein composed of a TAA linked to the extracellular domain (ecd) of the CD40L, which binds to the CD40 receptor on DCs, activates the DCs, and leads to the presentation of TAA fragments on Class I MHC. Two sc injections of the TAA/ecdCD40L protein as a booster following the sc administration of the Ad-sig-TAA/ecdCD40L vector (we call this the TAA/ecdCD40L VPP vaccine) expands the magnitude of the cellular and humoral immune response induced by the vector in 18 month old aged mice as well as in younger mice. In order to explore ways of further amplifying the immune response induced by this vaccine, we decided to test the feasibility of using this vaccine following treatments which reduce the number of T cells in the body of the test subject. We hypothesized that during states of chemotherapy or radiation induced lymphopenia, the number of negative regulatory CD4CD25FoxP3 T cells would be reduced, and all of the regulatory signals in the T cell compartment would be promoting expansion of T cells, thus creating an ideal state for vaccination. To test this hypothesis, we injected 100,000 cells from an established neoplastic cell line sc. Three days later, we administered myeloablative doses of total body irradiation (TBI) followed by a T cell depleted syngeneic bone marrow transplant (TCDBMT) to reconstitute neutrophil and platelet production. Three days following the TBI and TCDBMT, we intravenously infused donor lymphocytes (DLI) from a TAA/ ecdCD40L VPP vaccinated syngeneic donor. Four weeks later, we vaccinated the recipient mouse further with TAA/ecdCD40L sc injections. We tested this for a TAA composed of a junctional peptide from the p210Bcr-Abl protein of chronic myelogenous leukemia (CML) and for the E7 protein of the human papilloma virus (HPV). We found that in the case of the BcrAbl/ecdCD40L VPP vaccine, 50% of the mice treated with TBI, TCDBMT, ten million lymphocytes (DLI) from BcrAbl/ecdCD40L VPP vaccinated syngeneic donors followed in 4 weeks by 3 BcrAbl/ecdCD40L protein sc injections of the recipient test mouse, developed a complete response with the vaccination and that these mice remained disease free beyond 250 days after injection of the P210Bcr-Abl positive 32D leukemia cells, whereas C56BL/6J test mice treated with TBI and TCDBMT without DLI from vaccinated donors nor sc BcrAbl/ecdCD40L sc booster vaccination following injection with the p210Bcr-Abl positive 32D myeloid leukemia cell line all died by day 32. Mice treated with TBI, TCDBMT, DLI from unvaccinated donors followed by vaccination of the recipient with 3 sc BcrAbl/ecdCD40L protein injections exhibited a degree of leukemia suppression that was equal to mice receiving TBI, TCDBMT, DLI from a BcrAbl/ecdCD40L VPP vaccinated donor and BcrAbl/ecdCD40L vaccination. To test the effect of the TAA/ecdCD40L VPP vaccine against an antigen associated with an epithelial neoplasm, we injected 100,000 E7 positive TC-1 mouse cancer cells into syngeneic C57BL6J mice followed in 3–5 days by myeloablative doses of TBI and engrafting doses of TCDBMT. Three days later, the mice received 10 million spleen cells from syngeneic donor mice previously vaccinated with the E7/ecdCD40L VPP vaccine. Finally, 4 weeks later, the test mice received sc E7/ecdCD40L protein booster injections. The vaccinated mice achieved much greater degrees of tumor suppression than was seen following TBI and TCDBMT without DLI from vaccinated donors. These studies show that it is possible to induce a robust adaptive immune response by vaccination with the TAA/ecdCD40L VPP vaccine even in severely lymphopenic individuals.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3037-3037 ◽  
Author(s):  
Jakub Krejcik ◽  
Tineke Casneuf ◽  
Inger Nijhof ◽  
Bie Verbist ◽  
Jaime Bald ◽  
...  

Abstract Introduction: Daratumumab (DARA) is a novel human monoclonal antibody that targets CD38, a protein that is highly expressed on multiple myeloma (MM) cells. DARA acts through multiple immune effector-mediated mechanisms, including complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis. In two clinical studies (NCT00574288 [GEN501] and NCT01985126 [Sirius]) of DARA monotherapy in patients with relapsed and refractory MM, overall response rates were 36% and 29%, respectively. CD38 is highly expressed in myeloma cells but also expressed in lymphocytes and other immune cell populations. Therefore, the effects of DARA on immune cell populations and adaptive immune response pathways were investigated. Methods: The patient population investigated included treated subjects with MM that were relapsed after or were refractory to ≥2 prior therapies (GEN501) or had received ≥3 prior therapies, including a proteasome inhibitor (PI) and an immunomodulatory drug (IMiD), or were refractory to both a PI and an IMiD (Sirius). Patients assessed in this analysis were treated with 16 mg/kg DARA. When both studies were combined, median age (range) was 64 (31-84) years and median time from diagnosis was 5.12 (0.77-23.77) years. Seventy-six percent of patients had received >3 prior therapies and 91% were refractory to their last treatment. Clinical response was evaluated using IMWG consensus recommendations. Peripheral blood (PB) samples and bone marrow (BM) biopsies/aspirates were taken at prespecified time points and immunophenotyped by flow cytometry to enumerate various T-cell sub-types. T-cell clonality was measured by TCR sequencing. Antiviral T-cell response and regulatory T-cell (Treg) activity were analysed by functional in vitro assays. T-cell subpopulation counts were modelled over time with linear mixed modelling. Two group comparisons were performed using non-parametric Wilcoxon rank sum tests. Results: Data from 148 patients receiving 16 mg/kg DARA in GEN501 (n = 42) and Sirius (n = 106) were analyzed for changes in immune response. In PB, robust mean increases in CD3+ (44%), CD4+ (32%) and CD8+ (62%) T-cell counts per 100 days were seen with DARA treatment. However, responding evaluable patients (n = 45) showed significantly greater increases from baseline than nonresponders (n = 93) in CD3+ (P = 0.00012), CD4+ (P = 0.00031), and CD8+ (P = 0.00018) T cells. In BM aspirates the number of CD3+, CD4+, and CD8+ T-cells increased during treatment compared to baseline (the median percent increases were 19.95%, 5.66%, and 26.99% [n = 58]). Additionally, CD8+: CD4+ T-cell ratios significantly increased compared to baseline in both PB (P = 0.00017), and BM (P = 0.00016). T cell clonality, assessed by TCR sequencing, increased after DARA treatment compared with pretreatment (P = 0.049), with greater sums of absolute expansion in the repertoire (P = 0.037), as well as greater maximum expansion of a single clone (P = 0.048) in responders compared to nonresponders. Increased antiviral T-cell responses were observed post-DARA treatment, particularly in responders. Interestingly, a novel subpopulation of regulatory T cells was identified that expressed high levels of CD38. These cells comprised ~10% of all Tregs and were depleted by one DARA infusion. In ex vivo analyses, CD38+ Tregs appeared to be highly immune suppressive compared to CD38-Tregs. Conclusions: Robust T cell increases, increased CD8+: CD4+ ratios, increased antiviral responses, and increased T cell clonality were all observed after DARA treatment in a heavily pretreated, relapsed, and refractory patient population not expected to have strong immune responses. Improved clinical responses were associated with changes in these parameters. In addition, a sub-population of regulatory T cells expressing high CD38 levels was determined to be extremely immune suppressive and sensitive to DARA treatment. These data suggest a previously unknown immune modulatory role of DARA that may contribute to its efficacy, and a potential role for CD38 immune targeted therapies. We postulate that there are several distinct and complementary mechanisms that contribute to DARA's efficacy including increased antigen presentation through phagocytosis, targeting of immune suppressive Tregs, and increased adaptive immune responses. JK and TC contributed equally to this work. Disclosures Casneuf: Janssen: Employment. Verbist:Janssen: Employment. Bald:Janssen: Employment. Plesner:Genmab: Membership on an entity's Board of Directors or advisory committees; Roche and Novartis: Research Funding; Janssen and Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Liu:Janssen: Employment. van de Donk:Janssen Pharmaceuticals: Research Funding; Amgen: Research Funding; Celgene: Research Funding. Weiss:Janssen and Onclave: Research Funding; Janssen and Millennium: Consultancy. Ahmadi:Janssen: Employment. Lokhorst:Genmab: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Amgen: Honoraria. Mutis:Janssen: Research Funding; Genmab: Research Funding.


2020 ◽  
Author(s):  
Ademola Samuel Ojo ◽  
Paul Toluwatope Okediji ◽  
Ayotemide P. Akin-Onitolo ◽  
Olusegun S. Ojo ◽  
Oluyinka Oladele Opaleye

This paper attempts to answer the question: are recovered COVID-19 patients protected from re-infection? This review draws evidence from comparisons between immune responses to Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), which are phylogenetically closely related to Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). Relevant studies were identified and reviewed based on searches conducted using PubMed. Full-text original studies on short- and long-term immune responses to human coronaviruses were included. The immune dysfunction and clinical manifestations in SARS-CoV-2, SARS-CoV, and MERS-CoV were found to be similar. Infections with SARS-CoV and MERS-CoV trigger the production of antibodies and memory B- and T-cells. Serum IgM is detectable within 7 days, peak at 21-30 days and become undetectable by 180 days. IgG is detectable at 7 days, peak at 90 days, and decline to undetected levels by 2 years post-infection. Memory B- and T-cells persist in the body for up to 2 and 6 years respectively after initial infection. The short-term risk of SARS-CoV-2 re-infection is predictably low based on similarities in the short term adaptive immune response to kindred coronaviruses. However, more research will be required to determine the long-term adaptive immunity to SARS-CoV-2 and factors that may influence the existence of short- and long-term immunity against the virus.


Sign in / Sign up

Export Citation Format

Share Document