Enhanced efficacy of recombinant FVIII in noncovalent complex with PEGylated liposome in hemophilia A mice

Blood ◽  
2009 ◽  
Vol 114 (13) ◽  
pp. 2802-2811 ◽  
Author(s):  
Junliang Pan ◽  
Tongyao Liu ◽  
Ji-Yun Kim ◽  
Daguang Zhu ◽  
Chandra Patel ◽  
...  

Abstract Recombinant FVIII formulated in PEG-ylated liposomes (rFVIII-PEG-Lip) was reported to increase the bleed-free days from 7 to 13 days (at 35 IU/kg rFVIII) in severe hemophilia A patients. To understand the underlying mechanism, we sought to recapitulate its efficacy in hemophilia A mice. Animals treated with rFVIII-PEG-Lip achieved approximately 30% higher survival relative to rFVIII after tail vein transection inflicted 24 hours after dosing. The efficacy of rFVIII-PEG-Lip represents an approximately 2.5-fold higher “apparent” FVIII activity, which is not accounted for by its modestly increased (13%) half-life. The enhanced efficacy requires complex formation between rFVIII and PEG-Lip before the administration. Furthermore, PEG-Lip associates with the majority of platelets and monocytes in vivo, and results in increased P-selectin surface expression on platelets in response to collagen. Rotational thromboelastometry (ROTEM) analysis of whole blood from rFVIII-PEG-Lip–treated animals at 5 minutes up to 72 hours after dosing recapitulated the 2- to 3-fold higher apparent FVIII activity. The enhanced procoagulant activity is fully retained in plasma unless microparticles are removed by ultracentrifugation. Taken together, the efficacy of rFVIII-PEG-Lip is mediated mainly by its sensitization of platelets and the generation of procoagulant microparticles that may express sustained high-affinity receptors for FVIII.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2143-2143
Author(s):  
Thierry Lambert ◽  
Claude Guérois ◽  
Valerie Gay ◽  
Natalie Stieltjes ◽  
Marie-Anne Bertrand ◽  
...  

Abstract Background: A field study among 6 reference laboratories in the EU using chromogenic substrate assays revealed in some laboratories a FVIII level lower than expected when measuring the potency of ReFacto, a B-domain deleted recombinant FVIII concentrate. In an attempt to resolve these discrepancies, the standard used for establishing the potency of ReFacto was recalibrated in 2003. Indeed after this recalibration, the amount of ReFacto protein in each International Unit (IU) has increased by approximately 20 percent without change in the labeled dosage strength. Objectives: The primary objective of this prospective study was to assess the FVIII recovery in severe hemophilia A patients receiving recalibrated ReFacto. Methods: The study was conducted in 10 French Hemophilia Treatment Centers in Previously Treated Patients (> 150 exposure days to any FVIII concentrate). A series of 4 blood samples per patient were collected in a non-bleeding state, respectively before, 15mn, 30mn and 60mn after intravenous bolus infusion of a single dose of 50 ±5 IU/kg of ReFacto. Plasma FVIII activity was determined in a central lab using a chromogenic substrate assay (Coamatic FVIIITM). Results: Fourteen severe hemophilia A patients (FVIII: C < 1%) were evaluable for intention to treat analysis. Median age was 25.5 years (range: 12–48). Median injected dose was 53.3 UI/kg (range 48.4–56.8). Maximal plasma FVIII activity level was obtained 15mn (n=10) or 30 mn (n=4) after the end of infusion. Mean incremental recovery (K value) was 2.20 ±0.27 UI/dL per UI/kg infused (range: 1.89–2.75) with a mean in vivo recovery of 105.2% (range: 87.6–133.8). Conclusions: In most cases the peak of FVIII activity was obtained 15 mn after the end of infusion. Recovery of recalibrated ReFacto was similar to the expected recovery with full-length FVIII concentrates.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 704
Author(s):  
Jeong Pil Han ◽  
Dong Woo Song ◽  
Jeong Hyeon Lee ◽  
Geon Seong Lee ◽  
Su Cheong Yeom

Hemophilia A (HA) is an X-linked recessive blood coagulation disorder, and approximately 50% of severe HA patients are caused by F8 intron 22 inversion (F8I22I). However, the F8I22I mouse model has not been developed despite being a necessary model to challenge pre-clinical study. A mouse model similar to human F8I22I was developed through consequent inversion by CRISPR/Cas9-based dual double-stranded breakage (DSB) formation, and clinical symptoms of severe hemophilia were confirmed. The F8I22I mouse showed inversion of a 391 kb segment and truncation of mRNA transcription at the F8 gene. Furthermore, the F8I22I mouse showed a deficiency of FVIII activity (10.9 vs. 0 ng/mL in WT and F8I22I, p < 0.0001) and severe coagulation disorder phenotype in the activated partial thromboplastin time (38 vs. 480 s, p < 0.0001), in vivo bleeding test (blood loss/body weight; 0.4 vs. 2.1%, p < 0.0001), and calibrated automated thrombogram assays (Thrombin generation peak, 183 vs. 21.5 nM, p = 0.0012). Moreover, histological changes related to spontaneous bleeding were observed in the liver, spleen, and lungs. We present a novel HA mouse model mimicking human F8I22I. With a structural similarity with human F8I22I, the F8I22I mouse model will be applicable to the evaluation of general hemophilia drugs and the development of gene-editing-based therapy research.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 709-709
Author(s):  
Qizhen Shi ◽  
Erin L. Kuether ◽  
Jocelyn A. Schroeder ◽  
Crystal L. Perry ◽  
Scot A. Fahs ◽  
...  

Abstract Abstract 709 The important association between von Willebrand factor (VWF) and factor VIII (FVIII) has been investigated for decades, but the effect of VWF on FVIII inhibitors is still controversial. Studies have demonstrated that some anti-FVIII inhibitory antibodies inhibit VWF-FVIII interaction, while others rely on the presence of VWF to inhibit FVIII activities. The influence of VWF on the Bethesda assay, which is routinely used in the clinic to determine the titer of FVIII-neutralizing inhibitors, is still uncertain because the plasma from hemophilia A patients with inhibitors contains normal levels of VWF. To explore the effect of VWF on the reactivity of FVIII inhibitors, we immunized VWF and FVIII double knockout (VWFnullFVIIInull) mice with recombinant human B-domain deleted FVIII (rhFVIII) to induce anti-FVIII inhibitory antibody development. Inhibitory plasma was collected and the titer of inhibitors was determined by Bethesda assay. Murine plasma-derived VWF (from FVIIInull mice) or recombinant human VWF (rhVWF) was used to study the influence of VWF on inhibitor inactivation of FVIII activity (FVIII:C). The remaining FVIII:C after inactivation was determined by chromogenic assay. When inhibitory plasma was incubated with rhFVIII in the presence of 1 U/ml VWF, the residual FVIII activity recovered was higher than in the absence of VWF, resulting in 6.82 ± 1.12 (n = 27) fold lower apparent inhibitor titers. This protective effect is VWF dose dependent. The source of VWF (plasma-derived murine VWF vs. rhVWF) did not affect its protection of FVIII from inhibitor inactivation and VWF does not affect FVIII:C measured in the chromogenic assay in the absence of inhibitors. Interestingly, we found that inhibitor inactivation of FVIII:C in the absence of VWF occurred much faster than in its presence. When the usual 2 hr. incubation at 37°C was omitted from the Bethesda assay, adding rhVWF to rFVIII before mixing with inhibitory plasma resulted in 67.29 ± 20.18 (n = 5) fold lower apparent inhibitor titers than without added VWF. In contrast, if VWF was added to inhibitory plasma first and then mixed with rhFVIII, the inhibitor titers were only 11.04 ± 3.56 (n = 5) fold lower than without added VWF. These results indicate that rhFVIII present in a preformed VWF-FVIII complex is protected from inhibitory antibody inactivation. Conversely, when VWF and inhibitory plasma are added to rhFVIII at the same time, the VWF and inhibitors appear to compete to bind to rhFVIII. Inhibitor titers were lower than in the absence of VWF, but the protective effect is not as efficient as when VWF and rhFVIII were already associated with one another before encountering inhibitors. To confirm the protective effect of VWF on FVIII from inhibitor inactivation, we infused FVIIInull or VWFnullFVIIInull mice with inhibitory plasma and rhFVIII followed by a tail clip survival test. When rhFVIII was infused into FVIIInull mice to 2% followed by inhibitory plasma infusion, all mice with inhibitor titer of 2.5 BU/ml (n = 4) survived tail clipping, and 2 of 4 survived with either 25 BU/ml or 250 BU/ml. If inhibitory plasma was infused first followed by rhFVIII infusion, then only 2 of 6 mice with inhibitor titers of 2.5 BU/ml survived tail clip challenge and none survived with 25 BU/ml and 250 BU/ml. In the first set of mice the infused FVIII was able to form a protective complex with endogenous VWF before encountering inhibitors, while in the second set FVIII is exposed to VWF and pre-infused inhibitory antibodies at the same time, a competitive binding that appears to reduce VWF's protective effect. In contrast, when rhFVIII was infused into VWFnullFVIIInull mice followed by inhibitory plasma infusion, no animals (n = 4 for each group) survived tail clipping with inhibitor titers of 2.5 BU/ml or higher. In summary, our studies demonstrate that VWF exerts a protective effect, reducing inhibitor inactivation of FVIII, both in vitro and in vivo. While the role of VWF in stabilizing plasma FVIII in a milieu rich in proteases has been appreciated for decades, our results indicate that treatment utilizing products containing a complex of FVIII with VWF may be especially beneficial in hemophilia A patients with inhibitors. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (3) ◽  
pp. 798-807 ◽  
Author(s):  
Natalie J. Ward ◽  
Suzanne M. K. Buckley ◽  
Simon N. Waddington ◽  
Thierry VandenDriessche ◽  
Marinee K. L. Chuah ◽  
...  

Abstract Gene therapy for hemophilia A would be facilitated by development of smaller expression cassettes encoding factor VIII (FVIII), which demonstrate improved biosynthesis and/or enhanced biologic properties. B domain deleted (BDD) FVIII retains full procoagulant function and is expressed at higher levels than wild-type FVIII. However, a partial BDD FVIII, leaving an N-terminal 226 amino acid stretch (N6), increases in vitro secretion of FVIII tenfold compared with BDD-FVIII. In this study, we tested various BDD constructs in the context of either wild-type or codon-optimized cDNA sequences expressed under control of the strong, ubiquitous Spleen Focus Forming Virus promoter within a self-inactivating HIV-based lentiviral vector. Transduced 293T cells in vitro demonstrated detectable FVIII activity. Hemophilic mice treated with lentiviral vectors showed expression of FVIII activity and phenotypic correction sustained over 250 days. Importantly, codon-optimized constructs achieved an unprecedented 29- to 44-fold increase in expression, yielding more than 200% normal human FVIII levels. Addition of B domain sequences to BDD-FVIII did not significantly increase in vivo expression. These significant findings demonstrate that shorter FVIII constructs that can be more easily accommodated in viral vectors can result in increased therapeutic efficacy and may deliver effective gene therapy for hemophilia A.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2329-2329
Author(s):  
Qizhen Shi ◽  
Jocelyn A. Schroeder ◽  
David A. Wilcox ◽  
Robert R. Montgomery ◽  
Yingyu Chen

Abstract Our previous studies have demonstrated that targeting FVIII expression to platelets (2bF8) by lentiviral (LV) gene delivery to hematopoietic stem cells (HSCs) corrects bleeding diathesis in hemophilia A mice with or without inhibitors. Although the bleeding diathesis is improved in transduced recipients, the transduction efficiency using our current 2bF8 LV, is only about 10%, resulting a median level of platelet-FVIII (Plt-F8) of 1.5 mU/108 platelets even thought a myeloablative conditioning regimen was employed. It has been shown in clinical trials that efficient stem cell gene transfer and myeloablation is not required when there is a powerful selective advantage to the genetically modified cells. We hypothesize that incorporating a drug-resistance gene into the 2bF8 LV construct will allow for in vivo selection of 2bF8 LV-transduced cells which will result in the increase of therapeutic levels of Plt-F8 for hemophilia A gene therapy and reduce the potential for genotoxicity. To address our hypothesis, we constructed a new lentiviral vector, pWPT-2bF8/MGMT, which harbors dual genes, the 2bF8 gene and a drug-resistance gene, the MGMTP140K cassette. To explore the feasibility of the MGMT-based in vivo selection system, HSCs from FVIIInull mice were transduced with 2bF8/MGMT LV at an MOI (multiplicity of infectious) of 1, which is 1/10 of the MOI used for our regular 2bF8 LV transduction, and transplanted into littermates pre-conditioned with a non-myeloablative regimen, 660 cGy total body irradiation (TBI). We chose a low MOI because one of the goals of using the MGMT selection system is to reduce the potential for genotoxicity. After bone marrow (BM) reconstitution, the recipients were treated with O6-benzylguanine (BG) followed by 1, 3-bis-2 chloroethyl-1-nitrosourea (BCNU) monthly for 3 or 4 times. As determined by a chromogenic assay on platelet lysates, functional Plt-F8 expression in recipients was only 0.22 ± 0.15 mU/108 platelets before the drug treatment, but remarkably increased to 4.33 ± 5.48 mU/108 platelets (n = 16) after BG/BCNU drug-selective treatments. The levels of Plt-F8 in the untreated transduced control group remained low over the study period. FVIII activity was not detected in the plasma in any of the recipients even with Plt-F8 as high as 22 mU/108 platelets. The average copy number of 2bF8/MGMT proviral DNA per cell was determined by quantitative real-time PCR. 2bF8 proviral DNA was barely detectable (0.01 ± 0.02 copies/cell) in recipients before drug-selective treatment, but it increased to 0.42 ± 0.15 copies/cell after BG/BCNU treatments, confirming that 2bF8/MGMT genetically modified cells were effectively enriched in vivo after drug-selective treatment. When the tail clip survival test was used to assess phenotypic correction of the FVIIInull coagulation defect, 15 of 16 treated animals survived the tail clip challenge; in contrast, none of the untransduced FVIIInull control mice survived. When ROTEM analysis was used to determine the whole blood clotting time (CT), the CT was shortened from 3043 ± 728 seconds (n = 7) to 931± 273 seconds (n = 6) (P < 0.0001) in treated transduced recipients when compared to FVIIInull mice. There was no significant difference between wild type (722 ± 270 seconds, n = 7) and treated recipients. To ensure sustained Plt-F8 expression in BG/BCNU treated transduced recipients, some primary recipients were sacrificed 9 months after transplantation and BM mononuclear cells were transplanted into secondary recipients. Platelet lysate FVIII activity assays showed that the levels of Plt-F8 in secondary recipients were similar to those in primary recipients, confirming that long-term repopulating HSCs were successfully genetically modified by 2bF8/MGMT LV. When a low intensity pre-conditioning regimen of 440 cGy TBI was used, the levels of Plt-F8 increased from 0.06 ± 0.12 mU/108 platelets to 1.86 ± 2.06 mU/108 platelets after BG/BCNU drug-selective treatment. It is notable that no anti-FVIII inhibitory antibodies were detected in the treated recipients even after rhFVIII challenge, indicating that immune tolerance was induced in the treated animals. In contrast, all FVIIInull mice under the same challenge developed various levels of inhibitors. Taken together, we have established a powerful in vivo selective system that allows us to enrich 2bF8 LV-transduced cells and to enhance platelet-FVIII expression for hemophilia A gene therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (10) ◽  
pp. 3564-3572 ◽  
Author(s):  
Annelies Jorritsma ◽  
Raquel Gomez-Eerland ◽  
Maarten Dokter ◽  
Willeke van de Kasteele ◽  
Yvonne M. Zoet ◽  
...  

Abstract A recent phase 1 trial has demonstrated that the generation of tumor-reactive T lymphocytes by transfer of specific T-cell receptor (TCR) genes into autologous lymphocytes is feasible. However, compared with results obtained by infusion of tumor-infiltrating lymphocytes, the response rate observed in this first TCR gene therapy trial is low. One strategy that is likely to enhance the success rate of TCR gene therapy is the use of tumor-reactive TCRs with a higher capacity for tumor cell recognition. We therefore sought to develop standardized procedures for the selection of well-expressed, high-affinity, and safe human TCRs. Here we show that TCR surface expression can be improved by modification of TCR alpha and beta sequences and that such improvement has a marked effect on the in vivo function of TCR gene-modified T cells. From a panel of human, melanoma-reactive TCRs we subsequently selected the TCR with the highest affinity. Furthermore, a generally applicable assay was used to assess the lack of alloreactivity of this TCR against a large series of common human leukocyte antigen alleles. The procedures described in this study should be of general value for the selection of well- and stably expressed, high-affinity, and safe human TCRs for subsequent clinical testing.


1992 ◽  
Vol 68 (04) ◽  
pp. 433-435 ◽  
Author(s):  
M Morfini ◽  
G Longo ◽  
A Messori ◽  
M Lee ◽  
G White ◽  
...  

SummaryA recombinant FVIII preparation, Recombinate™, was compared with a high-purity plasma-derived concentrate, Hemofil® M, in 47 hemophilia A patients in a cross-over evaluation of pharmacokinetic properties. The recombinant material showed a significantly lower clearance, volume of distribution, and higher in vivo recovery, but a similar half-life to the plasma-based product.In a comparison with reported data from other standard concentrates, the recombinant preparation exhibited potentially better pharmacokinetic properties in that its clearance was slower and its half-life was longer.We conclude that the recombinant DNA method of preparation does not adversely affect the biological and pharmacological characteristics of the factor VIII molecule.


2004 ◽  
Vol 92 (08) ◽  
pp. 317-327 ◽  
Author(s):  
Dmitri Gnatenko ◽  
Yong Wu ◽  
Jolyon Jesty ◽  
Andrea Damon ◽  
Patrick Hearing ◽  
...  

SummaryWe have generated an E1a/E1b/E3-deleted adeno/adeno-associated (Ad/AAV) hybrid virus driven by a small nuclear RNA (pHU1-1) promoter for expression of a B domain-deleted (Thr761-Asn1639) factor VIII transgene (FVIIIΔ761-1639). Productive replication of Ad/AAV/FVIIIΔ761-1639 in AAV repexpressing cells resulted in generation of monomeric and dimeric mini-adenoviral (mAd) replicative forms that retained the AAV integration elements (mAd/FVIIIΔ761-1639). In vitro studies using Ad/AAV/FVIIIΔ761-1639 generated ∼2-logs greater FVIII activity than mAd/FVIIIΔ761-1639. To determine its capacity for in vivo excision and/or genomic integration, Ad/AAV/FVIIIΔ761-1639 was injected by tail vein into three groups of hemophilia A mice (2 X 1011 vp [n = 3]; 4 X 1011 vp [n = 3]; 8 X 1011 vp [n = 3]), with clear concentration-dependent increase in FVIII activity (range 160-510 mU/ml; plasma activity 16% – 51% of normal). Peak activity was seen by Day (D) 5, with slow return to baseline by D28 (0.1 – 0.9% activity); in only 3/9 mice was loss of FVIII activity associated with development of anti-FVIII antibodies. Quantitative-PCR using genomic DNA isolated from D28 liver, spleen, heart, lungs, and kidney demonstrated the highest concentration in liver (∼10 genomes/ cell), with little to no organ toxicity at early (D5 or 6) or late (D28) post-infusion time points. There was no evidence for spontaneous transgene excision or genomic integration in vivo as evaluated by quantitative PCR and genomic blotting. These data establish (i) the feasibility and applicability of developing high-titer Ad/AAV hybrid viruses for FVIII delivery using a small cellular promoter, (ii) the potential utility of this virus for generation of “gutted” monomeric and dimeric mAD/FVIII retaining AAV integration elements, and (iii) that the development of strategies for regulated Rep68/78 co-expression may provide a novel approach for excision, integration, and long-term FVIII transgene expression.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1193-1193
Author(s):  
Philip M Zakas ◽  
Bagirath Gangadharan ◽  
Graca Almeida-Porada ◽  
Christopher D Porada ◽  
H. Trent Spencer ◽  
...  

Abstract Abstract 1193 Factor VIII (fVIII) is an essential glycoprotein procofactor in the blood coagulation cascade. Mutations in the fVIII gene often result in diminished plasma fVIII activity causing the bleeding disorder hemophilia A, which obeys X-linked recessive genetics and affects approximately 1 in 7500 males. Current treatment is limited to intravenous infusion of plasma-derived or recombinant human (h)-fVIII containing products. This therapy is expensive and requires multi-weekly injections to achieve prophylaxis, which must be maintained for the duration of the patients' life to avoid debilitating joint disease as well as life-threatening bleeding episodes. While gene therapy is being explored as a potential cure, much research is aimed at improving the therapeutic utility of recombinant fVIII. Our laboratory has been interested in the comparison of recombinant fVIII molecules derived from different animal species and has identified many species-specific biochemical properties. The characterization of recombinant murine (m)-factor VIII revealed near complete stability at physiologic concentrations following thrombin activation upon which h-fVIII activity decays on the order of minutes. In contrast, porcine (p)-fVIII demonstrates 100-fold increased post-translational biosynthesis over h-fVIII as well as decreased engagement of the endoplasmic reticulum-resident unfolded protein response. Arruda and colleagues showed that canine (c)-fVIII displays 3-fold higher specific activity than that of h-, p-, or m-fVIII and currently is being used to treat bleeding episodes in canine hemophilia A colonies. Finally, we have generated hybrid fVIII constructs, mapped the sequences necessary and sufficient for certain differential properties, identified immunogenic epitopes inherent to each species and created novel fVIII molecules with combined potentially beneficial characteristics. The current study is a continuation of this line of research focusing on ovine (o)-fVIII. Recently, a line of hemophilia A sheep was re-established and the pathology and clinical profile was described. O-fVIII possesses a high degree of homology to h-fVIII with a similar A1-A2-activation peptide-A3-C1-C2 domain structure. The causative mutation was identified as a single nucleotide insertion causing a frameshift and premature stop codon in exon 14. Administration of human and hybrid h/p-fVIII in these sheep corrected the bleeding phenotype transiently, but invariably induced the formation of high titer anti-fVIII inhibitory antibodies leading to premature mortality. Herein, we describe the generation, expression and biochemical characterization of recombinant full-length and B-domain-deleted (BDD) o-fVIII. O-fVIII was cloned into the mammalian expression vector, ReNeo and a pace/furin linker sequence was introduced between the A2 domain and the activation peptide. Utilizing a baby hamster kidney cell expression system, full-length o- and h-fVIII demonstrated similar expression levels at 0.098 ± 0.024 and 0.022 ± 0.006 units/106 cells/24hr, respectively (p = 0.99). Removal of the ovine B domain resulted in increased expression (0.97 ± 0.2 units/106 cells/24hr, p < 0.001) to a level equivalent to BDD h-fVIII (0.49 ± 0.149 units/106 cells/24hr; p = 0.06). BDD o-fVIII was purified to virtual homogeneity from conditioned serum-free media using a two-step ion-exchange chromatography procedure identified previously for the purification of recombinant h- and p-fVIII. Two independent preparations were analyzed and determined to have specific activities of 12,300 and 14,760 units/mg. SDS-PAGE analysis revealed three predominant polypeptides species, with a minority of intact single chain as well as predominantly processed heavy and light chains. Uniquely, the heavy and light chain polypeptides displayed similar relative mobility and could only be distinguished by thrombin proteolysis or immuno-precipitation prior to SDS-PAGE using monoclonal antibodies with known epitopes in either the heavy or light chains. We anticipate that recombinant o-fVIII, similar to the situation that has occurred with the canine hemophilia A colony and recombinant c-fVIII, will facilitate the maintenance of the ovine hemophilia A herd and their utilization as a relevant large animal model for research and development of novel hemophilia A therapeutics. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 102 (12) ◽  
pp. 3919-3926 ◽  
Author(s):  
Ciaran D. Scallan ◽  
Tongyao Liu ◽  
Amy E. Parker ◽  
Susannah L. Patarroyo-White ◽  
Haifeng Chen ◽  
...  

Abstract Using separate adeno-associated viral 2 (AAV2) vectors to deliver the heavy and light chains of factor VIII (FVIII) we have overcome the packaging limitations of AAV, achieving phenotypic correction of hemophilia A in mice. AAV vectors were constructed that use a liver-specific promoter and the cDNA sequences of either the human or canine heavy and light chains of FVIII. After intraportal vein injection of these vectors in hemophilia-A mice, therapeutic to superphysiologic levels of active FVIII were achieved in plasma in a dose-dependent manner. Phenotypic correction of the bleeding diathesis was demonstrated by survival of all treated mice after tail clipping. Biochemical analysis demonstrated lower levels of heavy-chain (25- to 100-fold) compared with light-chain protein in the plasma of treated animals. Differences in gene transfer and transcription did not account for the differences in protein expression. We hypothesize that improvements in FVIII activity could be achieved by improvements in FVIII heavy-chain expression. This work demonstrates that cotransduction of liver with AAV vectors expressing the heavy and light chains of FVIII corrects hemophilia A in vivo, providing an alternative approach to the use of a single vector. This strategy may potentially be useful for other large therapeutic proteins that contain functionally distinct domains.


Sign in / Sign up

Export Citation Format

Share Document