The life span of short-lived plasma cells is partly determined by a block on activation of apoptotic caspases acting in combination with endoplasmic reticulum stress

Blood ◽  
2010 ◽  
Vol 116 (18) ◽  
pp. 3445-3455 ◽  
Author(s):  
Holger W. Auner ◽  
Christine Beham-Schmid ◽  
Niall Dillon ◽  
Pierangela Sabbattini

Abstract Apoptosis of short-lived plasma cells after a few days of intense immunoglobulin secretion is critical for maintaining a controlled humoral immune response. The mechanisms that regulate this process are poorly understood. Here we report that the key apoptotic caspases, caspase-3 and caspase-9, become resistant to activation by apoptotic stimuli when B cells differentiate into short-lived plasma cells. As a consequence, apoptosis of most short-lived plasma cells in vitro and in vivo is effector caspase-independent. We also show that a triaspartic acid repeat that normally prevents activation of caspase-3 becomes stabilized in short-lived plasma cells and myeloma cell lines. The block on caspase activation occurs before the accumulation of intracellular immunoglobulins and a progressive rise in secretory stress in the endoplasmic reticulum (ER). Plasma cells show increased susceptibility to ER stress–induced apoptosis and activate the ER-associated caspase-12, which is required specifically for nuclear apoptotic events. In nonlymphoid cells that cannot activate effector caspases, programmed cell death is delayed in response to ER stress. These observations suggest that the block on activation of key apoptotic caspases has evolved in short-lived plasma cells to prolong survival under conditions of ER stress resulting from high-level immunoglobulin secretion.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2554-2554
Author(s):  
Holger W Auner ◽  
Christine Beham-Schmid ◽  
Niall Dillon ◽  
Pierangela Sabbattini

Abstract Plasma cells (PCs) are the terminally differentiated effector cells of the humoral immune system. The majority of PCs are short-lived and undergo programmed cell death in the form of apoptosis after a few days of intensive immunoglobulin secretion. Despite potentially wide-ranging implications for infection control, auto-immunity, and PC dyscrasias, the mechanisms that govern the initiation and execution of PC apoptosis are poorly understood. We used two well-established murine systems of PC differentiation and immunohistochemistry of human lymphoid tissue sections to study the regulation of PC apoptosis. IgM-secreting post-mitotic CD138+B220− PCs were differentiated in vitro from primary mouse splenic B cells using cytokines and LPS and purified by magnetic selection. Murine I.29mu+ B lymphoma cells were induced to undergo plasmacytic differentiation by stimulation with LPS. In both systems, terminal PC differentiation is followed by spontaneous apoptosis of half of the PCs within 48h, similar to PC apoptosis in vivo. We found that a sharp increase in endoplasmatic reticulum (ER) stress, which is caused by an imbalance between secretory load and capacity in the ER, occurs in PCs that have completed differentiation and begin to undergo apoptosis. In parallel, susceptibility specifically to ER stress-induced apoptosis but not to other apoptotic stimuli increases substantially in differentiated PCs, despite an ongoing ER stress response and expansion of the secretory machinery. Caspase-12, which has been linked specifically to ER stress-induced apoptosis, is activated and processed during programmed PC death. Using the specific inhibitor of caspase-12, zATADfmk, we found that caspase-12 mediates apoptotic DNA fragmentation and chromatin condensation in PCs undergoing apoptosis but not in B cells undergoing tunicamycin-induced apoptosis. In contrast, the major apoptotic effector caspases (caspase-9, caspase-3, caspase-7) downstream of the mitochondria become resistant to activation by apoptotic ER stress during terminal PC differentiation and are not activated during PC apoptosis. We observed that he pan-caspase inhibitor, zVADfmk, completely blocks tunicamycin-induced apoptosis in B cells but does not inhibit PC apoptosis or tunicamycin-induced cell death in PCs. Using the small molecule PAC-1, which specifically activates caspase-3 by targeting a “safety-catch” amino acid sequence that keeps caspase-3 inactive, we found that caspase-3 is stabilized in its inactive form in PCs and human myeloma cell lines, but not in B cells. Immunohistochemistry of human lymphoid tissue sections demonstrated that most primary reactive PCs and extramedullary myeloma cells undergo spontaneous apoptosis in vivo without activation of caspase-3. Thus, ER stress plays a major role in limiting the life span of short-lived PCs and activates caspase-12, which mediates nuclear apoptosis specifically in PCs. The major apoptotic effector caspases, however, become resistant to activation during terminal PC differentiation, and PC apoptosis is largely independent of caspases downstream of the mitochondria. These observations lead us to propose that developmentally regulated inhibition of key apoptotic caspases, which rapidly execute apoptosis in most cells, has evolved in PCs as a means to delay apoptosis under conditions of increasing ER stress linked to immunoglobulin secretion. Overwhelming ER stress ultimately limits the life span of short-lived PCs by inducing apoptosis using alternative mechanism involving caspase-12, which is redundant for the execution of ER stress-induced apoptosis in cells that can activate the classical effector caspases.


Bone ◽  
2015 ◽  
Vol 73 ◽  
pp. 60-68 ◽  
Author(s):  
Amy Y. Sato ◽  
Xiaolin Tu ◽  
Kevin A. McAndrews ◽  
Lilian I. Plotkin ◽  
Teresita Bellido

2021 ◽  
Vol 30 ◽  
pp. 096368972110350
Author(s):  
Shengsen Yang ◽  
Fei Zhou ◽  
Yi Dong ◽  
Fei Ren

α-mangostin has been confirmed to promote the apoptosis of MG-63 cells, but its specific pro-apoptosis mechanism in osteosarcoma (OS) remains further investigation. Here, we demonstrated that α-mangostin restrained the viability of OS cells (143B and Saos-2), but had little effect on the growth of normal human osteoblast. α-mangostin increased OS cell apoptosis by activating the caspase-3/8 cascade. Besides, α-mangostin induced endoplasmic reticulum (ER) stress and restrained the Wnt/β-catenin pathway activity. 4PBA (an ER stress inhibitor) or LiCl (an effective Wnt activator) treatment effectively hindered α-mangostin-induced apoptosis and the caspase-3/8 cascade. Furthermore, we also found that α-mangostin induced ER stress by promoting ROS production. And ER stress-mediated apoptosis caused by ROS accumulation depended on the inactivation of Wnt/β-catenin pathway. In addition, α-mangostin significantly hindered the growth of xenograft tumors, induced the expression of ER stress marker proteins and activation of the caspase-3/8 cascade, and restrained the Wnt/β-catenin signaling in vivo. In short, ROS-mediated ER stress was involved in α-mangostin triggered apoptosis, which might depended on Wnt/β-catenin signaling inactivation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Siqi Yuan ◽  
Yao Fang ◽  
Mengling Tang ◽  
Zhiqiang Hu ◽  
Chenglong Rao ◽  
...  

Abstract Background Burkholderia pseudomallei, a facultative intracellular bacterium, is the aetiological agent of melioidosis that is responsible for up to 40% sepsis-related mortality in epidemic areas. However, no effective vaccine is available currently, and the drug resistance is also a major problem in the treatment of melioidosis. Therefore, finding new clinical treatment strategies in melioidosis is extremely urgent. Results We demonstrated that tauroursodeoxycholic acid (TUDCA), a clinically available endoplasmic reticulum (ER) stress inhibitor, can promote B. pseudomallei clearance both in vivo and in vitro. In this study, we investigated the effects of TUDCA on the survival of melioidosis mice, and found that treatment with TUDCA significantly decreased intracellular survival of B. pseudomallei. Mechanistically, we found that B. pseudomallei induced apoptosis and activated IRE1 and PERK signaling ways of ER stress in RAW264.7 macrophages. TUDCA treatment could reduce B. pseudomallei-induced ER stress in vitro, and TUDCA is protective in vivo. Conclusion Taken together, our study has demonstrated that B. pseudomallei infection results in ER stress-induced apoptosis, and TUDCA enhances the clearance of B. pseudomallei by inhibiting ER stress-induced apoptosis both in vivo and in vitro, suggesting that TUDCA could be used as a potentially alternative treatment for melioidosis.


Author(s):  
Cheng Liu ◽  
Jiaxin Xu ◽  
Chenxu Guo ◽  
Xugang Chen ◽  
Chunmei Qian ◽  
...  

Colorectal cancer (CRC) is one of the most common malignancies in the world and has a poor prognosis. In the present research, gambogenic acid (GNA), isolated from the traditional Chinese medicine gamboge, markedly induced apoptosis and inhibited the proliferation of CRC in vitro and in vivo. Furthermore, GNA triggered endoplasmic reticulum (ER) stress, which subsequently activated inositol-requiring enzyme (IRE) 1α and the eukaryotic translation initiation factor (eIF) 2α pathway. Pretreatment with salubrinal (an eIF2α inhibitor) rescued GNA-induced cell death. Furthermore, GNA downregulated the expression of Aurora A. The Aurora A inhibitor alisertib decreased ER stress. In human colorectal adenocarcinoma tissue, Aurora A was upregulated compared to normal colorectal epithelial nuclei. Furthermore, GNA ameliorated mouse colitis-associated cancer models. Our findings demonstrated that GNA significantly inhibited the proliferation of CRC through activation of ER stress by regulating Aurora A, which indicates the potential of GNA for preventing the progression of CRC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wen-Wen Wang ◽  
Ying-Lu Liu ◽  
Mei-Zi Wang ◽  
Huan Li ◽  
Bu-Hui Liu ◽  
...  

Background: The proximal renal tubule plays a critical role in diabetic kidney disease (DKD) progression. Early glomerular disease in DKD triggers a cascade of injuries resulting in renal tubulointerstitial disease. These pathophysiological responses are collectively described as diabetic tubulopathy (DT). Thus, therapeutic strategies targeting DT hold significant promise for early DKD treatment. Shenkang injection (SKI) has been widely used to treat renal tubulointerstitial fibrosis in patients with chronic kidney disease in China. However, it is still unknown whether SKI can alleviate DT. We designed a series of experiments to investigate the beneficial effects of SKI in DT and the mechanisms that are responsible for its effect on epithelial-to-mesenchymal transition (EMT) and endoplasmic reticulum (ER) stress-induced apoptosis in DT.Methods: The modified DKD rat models were induced by uni-nephrectomy, streptozotocin intraperitoneal injection, and a high-fat diet. Following the induction of renal injury, these animals received either SKI, rosiglitazone (ROS), or vehicle, for 42 days. For in vitro research, we exposed NRK-52E cells to high glucose (HG) and 4-phenylbutyric acid (4-PBA) with or without SKI or ROS. Changes in parameters related to renal tubular injury and EMT were analyzed in vivo. Changes in the proportion of apoptotic renal tubular cells and ER stress, and the signaling pathways involved in these changes, were analyzed both in vivo and in vitro.Results: SKI and ROS improved the general condition, the renal morphological appearance and the key biochemical parameters, and attenuated renal injury and EMT in the rat model of DKD. In addition, SKI and ROS alleviated apoptosis, inhibited ER stress, and suppressed PERK-eIF2α-ATF4-CHOP signaling pathway activation both in vivo and in vitro. Notably, our data showed that the regulatory in vitro effects of SKI on PERK-eIF2α-ATF4-CHOP signaling were similar to those of 4-PBA, a specific inhibitor of ER stress.Conclusion: This study confirmed that SKI can alleviate DT in a similar manner as ROS, and SKI achieves this effect by inhibiting EMT and ER stress-induced apoptosis. Our findings thereby provide novel information relating to the clinical value of SKI in the treatment of DT.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4979-4979
Author(s):  
Sofie Lust ◽  
Barbara Vanhoecke ◽  
Mireille Van Gele ◽  
Mary Kaileh ◽  
Jerina Boelens ◽  
...  

Abstract Introduction Correct folding of new proteins is supervised in the endoplasic reticulum (ER) unfolded protein response (UPR). Misfolded proteins recruit the chaperone Grp78 that is thereby released from the transcription factors ATF6, IRE-1 leading to compensatory increase in Grp78, and PERK, leading to phosphorylation of eIF2α and block of further protein translation. UPR overload leads to ER stress and cell death. Targeting the endoplasmic reticulum (ER) is a new strategy explored in B-CLL. The hop-derived chalcone Xanthohumol (X) has been characterized as a ‘broad-spectrum’ cancer chemopreventive agent. Recently, we demonstrated that X induces dose- and time-dependent cell death of MCF7/6 breast cancer cells accompanied by ER stress. X induces apoptosis and cleavage of poly(ADP)-ribose-polymerase (PARP) in B-CLL in vitro. The present study investigates the branches of the UPR in relation to X induced apoptosis of B-CLL cells. Materials and methods. Lymphocytes were isolated by Lymphoprep from 15 patients with B-CLL after informed consent. CD19 positive cells were selected by EasySep positive selection kit. Apoptosis was assessed by flow-cytometry (AnnexinV-PI). Western Blotting was used for Grp78, ATF6, XBP1, phospho-eIF2a, eIF2a, ATF4, CHOP, phospho-IKK, IKK, PARP, caspase-9, -8, -7, -4, cleaved caspase-3, mcl-1, bcl-xL, bax, bak, and bid. NF-kB activity was assessed by EMSA. Quantitative RT-PCR was performed to analyze Grp78 mRNA levels. Bcl-2 protein level was detected by flow cytometry and reactive oxygen species (ROS) by fluorescence microscopy. Results and conclusion X induced an upregulation of Grp78 mRNA levels which was not translated in an increase in protein. X treatment stimulated a rapid and sustained phosphorylation of eIF2a, suggesting the involvement of PERK. In contrast, the ER-stress transducers ATF6 and IRE1 were not activated. X-induced ER stress was associated with strong induction of the pro-apoptotic protein CHOP and inhibition of the NF-kB pathway. Furthermore, the pro-apoptotic effect of X was accompanied by an accumulation of ROS, a downregulation of the anti-apoptotic proteins mcl-1, bcl-xL, bcl-2 and processing of caspase-3, -7 and -9.In conclusion, the chalcone X is capable of inducing cell death with down-regulation of bcl-2, mcl-1, bcl-xL, and activation of the caspase cascade. This is accompanied by ER-stress as evidenced by the upregulation of Grp78 mRNA levels, induction of a rapid and sustained phosphorylation of eIF2a, upregulation of CHOP, and inhibition of the NF-kB signaling.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1446
Author(s):  
Tingting Jin ◽  
Jun Lin ◽  
Yingchao Gong ◽  
Xukun Bi ◽  
Shasha Hu ◽  
...  

Both calcium-independent phospholipase A2 beta (iPLA2β) and endoplasmic reticulum (ER) stress regulate important pathophysiological processes including inflammation, calcium homeostasis and apoptosis. However, their roles in ischemic heart disease are poorly understood. Here, we show that the expression of iPLA2β is increased during myocardial ischemia/reperfusion (I/R) injury, concomitant with the induction of ER stress and the upregulation of cell death. We further show that the levels of iPLA2β in serum collected from acute myocardial infarction (AMI) patients and in samples collected from both in vivo and in vitro I/R injury models are significantly elevated. Further, iPLA2β knockout mice and siRNA mediated iPLA2β knockdown are employed to evaluate the ER stress and cell apoptosis during I/R injury. Additionally, cell surface protein biotinylation and immunofluorescence assays are used to trace and locate iPLA2β. Our data demonstrate the increase of iPLA2β augments ER stress and enhances cardiomyocyte apoptosis during I/R injury in vitro and in vivo. Inhibition of iPLA2β ameliorates ER stress and decreases cell death. Mechanistically, iPLA2β promotes ER stress and apoptosis by translocating to ER upon myocardial I/R injury. Together, our study suggests iPLA2β contributes to ER stress-induced apoptosis during myocardial I/R injury, which may serve as a potential therapeutic target against ischemic heart disease.


Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


Sign in / Sign up

Export Citation Format

Share Document