scholarly journals Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool

Blood ◽  
2011 ◽  
Vol 117 (20) ◽  
pp. 5350-5361 ◽  
Author(s):  
Helen He Zhu ◽  
Kaihong Ji ◽  
Nazilla Alderson ◽  
Zhao He ◽  
Shuangwei Li ◽  
...  

Abstract The stem cell factor (SCF)/Kit system has served as a classic model in deciphering molecular signaling events in the hematopoietic compartment, and Kit expression is a most critical marker for hematopoietic stem cells (HSCs) and progenitors. However, it remains to be elucidated how Kit expression is regulated in HSCs. Herein we report that a cytoplasmic tyrosine phosphatase Shp2, acting downstream of Kit and other RTKs, promotes Kit gene expression, constituting a Kit-Shp2-Kit signaling axis. Inducible ablation of PTPN11/Shp2 resulted in severe cytopenia in BM, spleen, and peripheral blood in mice. Shp2 removal suppressed the functional pool of HSCs/progenitors, and Shp2-deficient HSCs failed to reconstitute lethally irradiated recipients because of defects in homing, self-renewal, and survival. We show that Shp2 regulates coordinately multiple signals involving up-regulation of Kit expression via Gata2. Therefore, this study reveals a critical role of Shp2 in maintenance of a functional HSC/progenitor pool in adult mammals, at least in part through a kinase-phosphatase-kinase cascade.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3674-3674
Author(s):  
Michihiro Kobayashi ◽  
Yuanshu Dong ◽  
Hao Yu ◽  
Yunpeng Bai ◽  
Sisi Chen ◽  
...  

Abstract The phosphatase of regenerating liver family of phosphatases, consisting of PRL1, PRL2 and PRL3, represents an intriguing group of proteins implicated in cell proliferation and tumorigenesis. However, the role of PRLs in normal and malignant hematopoiesis is largely unknown. While SCF/KIT signaling plays an important role in hematopoietic stem and progenitor cell (HSPC) maintenance, how SCF/KIT signaling is regulated in HSPCs remains poorly understood. We here report that PRL2 regulates HSPC maintenance through regulating SCF/KIT signaling. To define the role of PRL2 in hematopoiesis, we analyzed the hematopoietic stem cell (HSC) behavior in Prl2 deficient mice generated by our group. Prl2 deficiency results in ineffective hematopoiesis and impairs the long-term repopulating ability of HSCs. In addition, Prl2 null HSPCs are less proliferative and show decreased colony formation in response to SCF stimulation. Furthermore, Prl2 null HSPCs show reduced activation of the PI3K/AKT and ERK signaling in steady state and following SCF stimulation. Importantly, we found that PRL2 associates with KIT and the ability of PRL2 to enhance SCF signaling depends on its enzymatic activity, demonstrating that PRL2 mediates SCF/KIT signaling in HSPCs. Thus, PRL2 plays a critical role in hematopoietic stem and progenitor cell maintenance through regulating SCF/KIT signaling. Furthermore, loss of Prl2 decreased the ability of oncogenic KITD814V mutant in promoting hematopoietic progenitor cell proliferation and in activation of signaling pathways. We also checked the expression of PRL2 proteins in human AML cell lines and found increased level of PRL2 proteins in some acute myeloid leukemia (AML) cells compared with normal human bone marrow cells, indicating that PRL2 may play a pathological role in AML. Our results suggest that the PRL2 phosphatase may be a druggable target in myeloproliferative disease (MPD) and acute myeloid leukemia (AML) with oncogenic KIT mutations. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2001 ◽  
Vol 97 (4) ◽  
pp. 911-914 ◽  
Author(s):  
Cheng-Kui Qu ◽  
Suzanne Nguyen ◽  
Jianzhu Chen ◽  
Gen-Sheng Feng

Abstract Shp-1 and Shp-2 are cytoplasmic phosphotyrosine phosphatases with similar structures. Mice deficient in Shp-2 die at midgestation with defects in mesodermal patterning, and a hypomorphic mutation at the Shp-1 locus results in the moth-eaten viable (mev) phenotype. Previously, a critical role of Shp-2 in mediating erythroid/myeloid cell development was demonstrated. By using the RAG-2–deficient blastocyst complementation, the role of Shp-2 in lymphopoiesis has been determined. Chimeric mice generated by injecting Shp-2−/− embryonic stem cells into Rag-2–deficient blastocysts had no detectable mature T and B cells, serum immunoglobulin M, or even Thy-1+ and B220+ precursor lymphocytes. Collectively, these results suggest a positive role of Shp-2 in the development of all blood cell lineages, in contrast to the negative effect of Shp-1 in this process. To determine whether Shp-1 and Shp-2 interact in hematopoiesis, Shp-2−/−:mev/mev double-mutant embryos were generated and the hematopoietic cell development in the yolk sacs was examined. More hematopoietic stem/progenitor cells were detected in Shp-2−/−:mev/mevembryos than in Shp-2−/− littermates. The partial rescue by Shp-1 deficiency of the defective hematopoiesis caused by the Shp-2 mutation suggests that Shp-1 and Shp-2 have antagonistic effects in hematopoiesis, possibly through a bidirectional modulation of the same signaling pathway(s).


Hematology ◽  
2014 ◽  
Vol 2014 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Sophia R. Balderman ◽  
Laura M. Calvi

Abstract The BM microenvironment and its components regulate hematopoietic stem and progenitor cell (HSC) fate. An abnormality in the BM microenvironment and specific dysfunction of the HSC niche could play a critical role in initiation, disease progression, and response to therapy of BM failure syndromes. Therefore, the identification of changes in the HSC niche in BM failure syndromes should lead to further knowledge of the signals that disrupt the normal microenvironment. In turn, niche disruption may contribute to disease morbidity, resulting in pancytopenia and clonal evolution, and its understanding could suggest new therapeutic targets for these conditions. In this chapter, we briefly review the evidence for the importance of the BM microenvironment as a regulator of normal hematopoiesis, summarize current knowledge regarding the role of dysfunctions in the BM microenvironment in BM failure syndromes, and propose a strategy through which niche stimulation can complement current treatment for myelodysplastic syndrome.


2019 ◽  
Vol 20 (9) ◽  
pp. 2066 ◽  
Author(s):  
Namrata Khurana ◽  
Suresh C. Sikka

Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Maria Cecilia Oliveira-Nunes ◽  
Glaucia Julião ◽  
Aline Menezes ◽  
Fernanda Mariath ◽  
John A. Hanover ◽  
...  

AbstractGlioblastoma (GBM) is a grade IV glioma highly aggressive and refractory to the therapeutic approaches currently in use. O-GlcNAcylation plays a key role for tumor aggressiveness and progression in different types of cancer; however, experimental evidence of its involvement in GBM are still lacking. Here, we show that O-GlcNAcylation plays a critical role in maintaining the composition of the GBM secretome, whereas inhibition of OGA activity disrupts the intercellular signaling via microvesicles. Using a label-free quantitative proteomics methodology, we identified 51 proteins in the GBM secretome whose abundance was significantly altered by activity inhibition of O-GlcNAcase (iOGA). Among these proteins, we observed that proteins related to proteasome activity and to regulation of immune response in the tumor microenvironment were consistently downregulated in GBM cells upon iOGA. While the proteins IGFBP3, IL-6 and HSPA5 were downregulated in GBM iOGA cells, the protein SQSTM1/p62 was exclusively found in GBM cells under iOGA. These findings were in line with literature evidence on the role of p62/IL-6 signaling axis in suppressing tumor aggressiveness and our experimental evidence showing a decrease in radioresistance potential of these cells. Taken together, our findings provide evidence that OGA activity may regulate the p62 and IL-6 abundance in the GBM secretome. We propose that the assessment of tumor status from the main proteins present in its secretome may contribute to the advancement of diagnostic, prognostic and even therapeutic tools to approach this relevant malignancy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brianna J. Klein ◽  
Anagha Deshpande ◽  
Khan L. Cox ◽  
Fan Xuan ◽  
Mohamad Zandian ◽  
...  

AbstractChromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Courtney B. Johnson ◽  
Jizhou Zhang ◽  
Daniel Lucas

Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.


2021 ◽  
Vol 22 (12) ◽  
pp. 6613
Author(s):  
Fernando C. Baltanás ◽  
Rósula García-Navas ◽  
Eugenio Santos

The SOS family of Ras-GEFs encompasses two highly homologous and widely expressed members, SOS1 and SOS2. Despite their similar structures and expression patterns, early studies of constitutive KO mice showing that SOS1-KO mutants were embryonic lethal while SOS2-KO mice were viable led to initially viewing SOS1 as the main Ras-GEF linking external stimuli to downstream RAS signaling, while obviating the functional significance of SOS2. Subsequently, different genetic and/or pharmacological ablation tools defined more precisely the functional specificity/redundancy of the SOS1/2 GEFs. Interestingly, the defective phenotypes observed in concomitantly ablated SOS1/2-DKO contexts are frequently much stronger than in single SOS1-KO scenarios and undetectable in single SOS2-KO cells, demonstrating functional redundancy between them and suggesting an ancillary role of SOS2 in the absence of SOS1. Preferential SOS1 role was also demonstrated in different RASopathies and tumors. Conversely, specific SOS2 functions, including a critical role in regulation of the RAS–PI3K/AKT signaling axis in keratinocytes and KRAS-driven tumor lines or in control of epidermal stem cell homeostasis, were also reported. Specific SOS2 mutations were also identified in some RASopathies and cancer forms. The relevance/specificity of the newly uncovered functional roles suggests that SOS2 should join SOS1 for consideration as a relevant biomarker/therapy target.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Meerim Park ◽  
Jong Jin Seo

The selection of hematopoietic stem cell transplantation (HSCT) donors includes a rigorous assessment of the availability and human leukocyte antigen (HLA) match status of donors. HLA plays a critical role in HSCT, but its involvement in HSCT is constantly in flux because of changing technologies and variations in clinical transplantation results. The increased availability of HSCT through the use of HLA-mismatched related and unrelated donors is feasible with a more complete understanding of permissible HLA mismatches and the role of killer-cell immunoglobulin-like receptor (KIR) genes in HSCT. The influence of nongenetic factors on the tolerability of HLA mismatching has recently become evident, demonstrating a need for the integration of both genetic and nongenetic variables in donor selection.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1575
Author(s):  
Francisco J. Carvajal ◽  
Waldo Cerpa

Traumatic Brain Injury (TBI) mediates neuronal death through several events involving many molecular pathways, including the glutamate-mediated excitotoxicity for excessive stimulation of N-methyl-D-aspartate receptors (NMDARs), producing activation of death signaling pathways. However, the contribution of NMDARs (distribution and signaling-associated to the distribution) remains incompletely understood. We propose a critical role of STEP61 (Striatal-Enriched protein tyrosine phosphatase) in TBI; this phosphatase regulates the dephosphorylated state of the GluN2B subunit through two pathways: by direct dephosphorylation of tyrosine-1472 and indirectly via dephosphorylation and inactivation of Fyn kinase. We previously demonstrated oxidative stress’s contribution to NMDAR signaling and distribution using SOD2+/− mice such a model. We performed TBI protocol using a controlled frontal impact device using C57BL/6 mice and SOD2+/− animals. After TBI, we found alterations in cognitive performance, NMDAR-dependent synaptic function (decreased synaptic form of NMDARs and decreased synaptic current NMDAR-dependent), and increased STEP61 activity. These changes are reduced partially with the STEP61-inhibitor TC-2153 treatment in mice subjected to TBI protocol. This study contributes with evidence about the role of STEP61 in the neuropathological progression after TBI and also the alteration in their activity, such as an early biomarker of synaptic damage in traumatic lesions.


Sign in / Sign up

Export Citation Format

Share Document