scholarly journals Regulation of mast cell survival and function by tuberous sclerosis complex 1

Blood ◽  
2012 ◽  
Vol 119 (14) ◽  
pp. 3306-3314 ◽  
Author(s):  
Jinwook Shin ◽  
Hongjie Pan ◽  
Xiao-Ping Zhong

Abstract Mast cells play critical roles in allergic disorders and asthma. The importance of tuberous sclerosis complex 1/2-mammalian target of rapamycin (TSC1/2-mTOR) signaling in mast cells is unknown. Here, we report that TSC1 is a critical regulator for mTOR signaling in mast cells downstream of FcεRI and c-Kit, and differentially controls mast cell degranulation and cytokine production. TSC1-deficiency results in impaired mast cell degranulation, but enhanced cytokine production in vitro and in vivo after FcεRI engagement. Furthermore, TSC1 is critical for mast cell survival through multiple pathways of apoptosis including the down-regulation of p53, miR-34a, reactive oxygen species, and the up-regulation of Bcl-2. Together, these findings reveal that TSC1 is a critical regulator of mast cell activation and survival, suggesting the manipulation of the TSC1/2-mTOR pathway as a therapeutic strategy for mast cell-mediated diseases.

2020 ◽  
Vol 21 (7) ◽  
pp. 2472 ◽  
Author(s):  
Ryota Uchida ◽  
Michiko Kato ◽  
Yuka Hattori ◽  
Hiroko Kikuchi ◽  
Emi Watanabe ◽  
...  

Jabara (Citrus jabara Hort. ex Y. Tanaka) is a type of citrus fruit known for its beneficial effect against seasonal allergies. Jabara is rich in the antioxidant narirutin whose anti-allergy effect has been demonstrated. One of the disadvantages in consuming Jabara is its bitter flavor. Therefore, we fermented the fruit to reduce the bitterness and make Jabara easy to consume. Here, we examined whether fermentation alters the anti-allergic property of Jabara. Suppression of degranulation and cytokine production was observed in mast cells treated with fermented Jabara and the effect was dependent on the length of fermentation. We also showed that 5-hydroxymethylfurfural (5-HMF) increases as fermentation progresses and was identified as an active component of fermented Jabara, which inhibited mast cell degranulation. Mast cells treated with 5-HMF also exhibited reduced degranulation and cytokine production. In addition, we showed that the expression levels of phospho-PLCγ1 and phospho-ERK1/2 were markedly reduced upon FcεRI stimulation. These results indicate that 5-HMF is one of the active components of fermented Jabara that is involved in the inhibition of mast cell activation.


1999 ◽  
Vol 86 (1) ◽  
pp. 202-210 ◽  
Author(s):  
N. Noviski ◽  
J. P. Brewer ◽  
W. A. Skornik ◽  
S. J. Galli ◽  
J. M. Drazen ◽  
...  

Exposure to ambient ozone (O3) is associated with increased exacerbations of asthma. We sought to determine whether mast cell degranulation is induced by in vivo exposure to O3in mice and whether mast cells play an essential role in the development of pulmonary pathophysiological alterations induced by O3. For this we exposed mast cell-deficient WBB6F1- kitW/ kitW-v( kitW/ kitW-v) mice and the congenic normal WBB6F1(+/+) mice to air or to 1 or 3 parts/million O3for 4 h and studied them at different intervals from 4 to 72 h later. We found evidence of O3-induced cutaneous, as well as bronchial, mast cell degranulation. Polymorphonuclear cell influx into the pulmonary parenchyma was observed after exposure to 1 part/milllion O3only in mice that possessed mast cells. Airway hyperresponsiveness to intravenous methacholine measured in vivo under pentobarbital anesthesia was observed in both kitW/ kitW-vand +/+ mice after exposure to O3. Thus, although mast cells are activated in vivo by O3and participate in O3-induced polymorphonuclear cell infiltration into the pulmonary parenchyma, they do not participate detectably in the development of O3-induced airway hyperresponsiveness in mice.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shotaro Nakajima ◽  
Kayoko Ishimaru ◽  
Anna Kobayashi ◽  
Guannan Yu ◽  
Yuki Nakamura ◽  
...  

AbstractInterleukin-33 (IL-33)/ST2–mediated mast cell activation plays important roles in the pathophysiology of allergic diseases. Hence, pharmacologically targeting the IL-33/ST2 pathway in mast cells could help to treat such diseases. We found that resveratrol inhibits IL-33/ST2–mediated mast cell activation. Resveratrol suppressed IL-33–induced IL-6, IL-13, and TNF-α production in mouse bone marrow–derived mast cells (BMMCs), mouse fetal skin–derived mast cells, and human basophils. Resveratrol also attenuated cytokine expression induced by intranasal administration of IL-33 in mouse lung. IL-33–mediated cytokine production in mast cells requires activation of the NF-κB and MAPK p38–MAPK-activated protein kinase-2/3 (MK2/3)–PI3K/Akt pathway, and resveratrol clearly inhibited IL-33–induced activation of the MK2/3–PI3K/Akt pathway, but not the NF-κB pathway, without affecting p38 in BMMCs. Importantly, resveratrol inhibited the kinase activity of MK2, and an MK2/3 inhibitor recapitulated the suppressive effects of resveratrol. Resveratrol and an MK2/3 inhibitor also inhibited IgE-dependent degranulation and cytokine production in BMMCs, concomitant with suppression of the MK2/3–PI3K/Akt pathway. These findings indicate that resveratrol inhibits both IL-33/ST2–mediated and IgE-dependent mast cell activation principally by targeting the MK2/3–PI3K/Akt axis downstream of p38. Thus, resveratrol may have potential for the prevention and treatment of broad ranges of allergic diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Constantin Căruntu ◽  
Daniel Boda ◽  
Sorin Musat ◽  
Ana Căruntu ◽  
Eugen Mandache

Mast cells play a key role in modulation of stress-induced cutaneous inflammation. In this study we investigate the impact of repeated exposure to stress on mast cell degranulation, in both hairy and glabrous skin. Adult male Wistar rats were randomly divided into four groups: Stress 1 day(n=8), Stress 10 days(n=7), Stress 21 days(n=6), and Control(n=8). Rats in the stress groups were subjected to 2 h/day restraint stress. Subsequently, glabrous and hairy skin samples from animals of all groups were collected to assess mast cell degranulation by histochemistry and transmission electron microscopy. The impact of stress on mast cell degranulation was different depending on the type of skin and duration of stress exposure. Short-term stress exposure induced an amplification of mast cell degranulation in hairy skin that was maintained after prolonged exposure to stress. In glabrous skin, even though acute stress exposure had a profound stimulating effect on mast cell degranulation, it diminished progressively with long-term exposure to stress. The results of our study reinforce the view that mast cells are active players in modulating skin responses to stress and contribute to further understanding of pathophysiological mechanisms involved in stress-induced initiation or exacerbation of cutaneous inflammatory processes.


2014 ◽  
Vol 211 (13) ◽  
pp. 2635-2649 ◽  
Author(s):  
Di Wang ◽  
Mingzhu Zheng ◽  
Yuanjun Qiu ◽  
Chuansheng Guo ◽  
Jian Ji ◽  
...  

Antigen-mediated cross-linking of IgE on mast cells triggers a signaling cascade that results in their degranulation and proinflammatory cytokine production, which are key effectors in allergic reactions. We show that the activation of mast cells is negatively regulated by the newly identified adaptor protein Tespa1. Loss of Tespa1 in mouse mast cells led to hyper-responsiveness to stimulation via FcεRI. Mice lacking Tespa1 also displayed increased sensitivity to IgE-mediated allergic responses. The dysregulated signaling in KO mast cells was associated with increased activation of Grb2-PLC-γ1-SLP-76 signaling within the LAT1 (linker for activation of T cells family, member 1) signalosome versus the LAT2 signalosome. Collectively, these findings show that Tespa1 orchestrates mast cell activation by tuning the balance of LAT1 and LAT2 signalosome assembly.


2003 ◽  
Vol 94 (1) ◽  
pp. 325-334 ◽  
Author(s):  
Dawn R. S. Steiner ◽  
Norberto C. Gonzalez ◽  
John G. Wood

Systemic hypoxia produces an inflammatory response characterized by increases in reactive O2 species (ROS), venular leukocyte-endothelial adherence and emigration, and vascular permeability. Inflammation is typically initiated by mediators released from activated perivascular cells that generate the chemotactic gradient responsible for extravascular leukocyte accumulation. These experiments were directed to study the possible participation of mast cells in hypoxia-induced microvascular inflammation. Mast cell degranulation, ROS levels, leukocyte adherence and emigration, and vascular permeability were studied in the mesenteric microcirculation by using intravital microscopy of anesthetized rats. The main findings were 1) activation of mast cells with compound 48/80 in normoxia produced microvascular effects similar, but not identical, to those of hypoxia; 2) systemic hypoxia resulted in rapid mast cell degranulation; 3) blockade of mast cell degranulation with cromolyn prevented or attenuated the hypoxia-induced increases in ROS, leukocyte adherence/emigration, and vascular permeability; and 4) mast cell degranulation during hypoxia was prevented by administration of the antioxidant lipoic acid and of nitric oxide. These results show that mast cells play a key role in hypoxia-induced inflammation and suggest that alterations in the ROS-nitric oxide balance may be involved in mast cell activation during hypoxia.


2006 ◽  
Vol 203 (2) ◽  
pp. 337-347 ◽  
Author(s):  
Stefanie Klemm ◽  
Jan Gutermuth ◽  
Lothar Hültner ◽  
Tim Sparwasser ◽  
Heidrun Behrendt ◽  
...  

Mast cells are pivotal effector cells in IgE-mediated allergic inflammatory diseases. Central for mast cell activation are signals from the IgE receptor FcεRI, which induce cell degranulation with the release of preformed mediators and de novo synthesis of proinflammatory leukotrienes and cytokines. How these individual mast cell responses are differentially controlled is still unresolved. We identify B cell lymphoma 10 (Bcl10) and mucosa-associated lymphoid tissue 1 (Malt1) as novel key regulators of mast cell signaling. Mice deficient for either protein display severely impaired IgE-dependent late phase anaphylactic reactions. Mast cells from these animals neither activate nuclear factor κB (NF-κB) nor produce tumor necrosis factor α or interleukin 6 upon FcεRI ligation even though proximal signaling, degranulation, and leukotriene secretion are normal. Thus, Bcl10 and Malt1 are essential positive mediators of FcεRI-dependent mast cell activation that selectively uncouple NF-κB–induced proinflammatory cytokine production from degranulation and leukotriene synthesis.


2016 ◽  
Vol 36 (9) ◽  
pp. 1366-1382 ◽  
Author(s):  
Monika Bambouskova ◽  
Iva Polakovicova ◽  
Ivana Halova ◽  
Gautam Goel ◽  
Lubica Draberova ◽  
...  

Aggregation of the high-affinity receptor for IgE (FcεRI) in mast cells initiates activation events that lead to degranulation and release of inflammatory mediators. To better understand the signaling pathways and genes involved in mast cell activation, we developed a high-throughput mast cell degranulation assay suitable for RNA interference experiments using lentivirus-based short hairpin RNA (shRNA) delivery. We tested 432 shRNAs specific for 144 selected genes for effects on FcεRI-mediated mast cell degranulation and identified 15 potential regulators. In further studies, we focused on galectin-3 (Gal3), identified in this study as a negative regulator of mast cell degranulation. FcεRI-activated cells with Gal3 knockdown exhibited upregulated tyrosine phosphorylation of spleen tyrosine kinase and several other signal transduction molecules and enhanced calcium response. We show that Gal3 promotes internalization of IgE-FcεRI complexes; this may be related to our finding that Gal3 is a positive regulator of FcεRI ubiquitination. Furthermore, we found that Gal3 facilitates mast cell adhesion and motility on fibronectin but negatively regulates antigen-induced chemotaxis. The combined data indicate that Gal3 is involved in both positive and negative regulation of FcεRI-mediated signaling events in mast cells.


Cephalalgia ◽  
2017 ◽  
Vol 38 (9) ◽  
pp. 1564-1574 ◽  
Author(s):  
Angela J Okragly ◽  
S Michelle Morin ◽  
David DeRosa ◽  
Andrea P Martin ◽  
Kirk W Johnson ◽  
...  

Background Many patients with migraines suffer from allergies and vice versa, suggesting a relationship between biological mechanisms of allergy and migraine. It was proposed many years ago that mast cells may be involved in the pathophysiology of migraines. We set out to investigate the relationship between mast cell activation and known neurogenic peptides related to migraine. Methods Cultured human mast cells were assayed for the presence of neuropeptides and their receptors at the RNA and protein level. Immunohistochemistry analyses were performed on tissue resident and cultured mast cells. Mast cell degranulation assays were performed and pituitary adenylate cyclase-activating polypeptide (PACAP) activity was measured with a bioassay. Results We found that cultured and tissue resident human mast cells contain PACAP in cytoplasmic granules. No other neurogenic peptide known to be involved in migraine was detected, nor did mast cells express the receptors for PACAP or other neurogenic peptides. Furthermore, mast cell degranulation through classic IgE-mediated allergic mechanisms led to the release of PACAP. The PACAP released from mast cells was biologically active, as demonstrated using PACAP receptor reporter cell lines. We confirmed existing literature that mast cell degranulation can also be induced by several neurogenic peptides, which also resulted in PACAP release. Conclusion Our data provides a potential biological explanation for the association between allergy and migraine by demonstrating the release of biologically active PACAP from mast cells.


2018 ◽  
Vol 46 (6) ◽  
pp. 2401-2411 ◽  
Author(s):  
Guogang Xie ◽  
Feng Wang ◽  
Xia Peng ◽  
Yuting Liang ◽  
Haiwei Yang ◽  
...  

Background/Aims: As a major inflammatory molecule released from mast cell activation, histamine has been reported to regulate TLRs expression and cytokine production in inflammatory cells present in the microenvironment. In this study, we determined the ability of histamine to modulate TLRs expression and cytokine production in mast cells. Methods: HMC-1 and P815 cells were exposed to various concentrations of histamine in the presence or absence of histamine antagonist for 2, 6 or 16 h. The effect of histamine on the expression of TLR3 protein and mRNA was analyzed by flow cytometry、 RT-PCR and immunofluorescent microscopy. Furthermore, we also examined the effect of histamine on the secretion of MCP-1 and IL-13 from mast cells by ELISA. Results: The amplification of TLR3 mRNA and protein expression in mast cells was observed after incubation with histamine, which was accompanied by increasing secretion of IL-13 and MCP-1 via H1 receptor. The signaling pathways of PI3K/ Akt and Erk1/2/MAPK contributed to these induction effects. Conclusion: These results demonstrate that histamine up-regulates the expression of TLR3 and secretion of IL-13 and MCP-1 in mast cells, thus identifying a new mechanism for the histamine inducing allergic response.


Sign in / Sign up

Export Citation Format

Share Document