scholarly journals The Bcl10–Malt1 complex segregates FcεRI-mediated nuclear factor κB activation and cytokine production from mast cell degranulation

2006 ◽  
Vol 203 (2) ◽  
pp. 337-347 ◽  
Author(s):  
Stefanie Klemm ◽  
Jan Gutermuth ◽  
Lothar Hültner ◽  
Tim Sparwasser ◽  
Heidrun Behrendt ◽  
...  

Mast cells are pivotal effector cells in IgE-mediated allergic inflammatory diseases. Central for mast cell activation are signals from the IgE receptor FcεRI, which induce cell degranulation with the release of preformed mediators and de novo synthesis of proinflammatory leukotrienes and cytokines. How these individual mast cell responses are differentially controlled is still unresolved. We identify B cell lymphoma 10 (Bcl10) and mucosa-associated lymphoid tissue 1 (Malt1) as novel key regulators of mast cell signaling. Mice deficient for either protein display severely impaired IgE-dependent late phase anaphylactic reactions. Mast cells from these animals neither activate nuclear factor κB (NF-κB) nor produce tumor necrosis factor α or interleukin 6 upon FcεRI ligation even though proximal signaling, degranulation, and leukotriene secretion are normal. Thus, Bcl10 and Malt1 are essential positive mediators of FcεRI-dependent mast cell activation that selectively uncouple NF-κB–induced proinflammatory cytokine production from degranulation and leukotriene synthesis.

2009 ◽  
Vol 206 (1) ◽  
pp. 195-207 ◽  
Author(s):  
Yong Jun Yang ◽  
Wei Chen ◽  
Alexander Edgar ◽  
Bo Li ◽  
Jeffery D. Molkentin ◽  
...  

Aggregation of the high affinity IgE receptor (FcɛRI) activates a cascade of signaling events leading to mast cell activation. Subsequently, inhibitory signals are engaged for turning off activating signals. We identified that regulator of calcineurin (Rcan) 1 serves as a negative regulator for turning off FcɛRI-mediated mast cell activation. FcɛRI-induced Rcan1 expression was identified by suppression subtractive hybridization and verified by real-time quantitative polymerase chain reaction and Western blotting. Deficiency of Rcan1 led to increased calcineurin activity, increased nuclear factor of activated T cells and nuclear factor κB activation, increased cytokine production, and enhanced immunoglobulin E–mediated late-phase cutaneous reactions. Forced expression of Rcan1 in wild-type or Rcan1-deficient mast cells reduced FcɛRI-mediated cytokine production. Rcan1 deficiency also led to increased FcɛRI-mediated mast cell degranulation and enhanced passive cutaneous anaphylaxis. Analysis of the Rcan1 promoter identified a functional Egr1 binding site. Biochemical and genetic evidence suggested that Egr1 controls Rcan1 expression. Our results identified Rcan1 as a novel inhibitory signal in FcɛRI-induced mast cell activation and established a new link of Egr1 and Rcan1 in FcɛRI signaling.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shotaro Nakajima ◽  
Kayoko Ishimaru ◽  
Anna Kobayashi ◽  
Guannan Yu ◽  
Yuki Nakamura ◽  
...  

AbstractInterleukin-33 (IL-33)/ST2–mediated mast cell activation plays important roles in the pathophysiology of allergic diseases. Hence, pharmacologically targeting the IL-33/ST2 pathway in mast cells could help to treat such diseases. We found that resveratrol inhibits IL-33/ST2–mediated mast cell activation. Resveratrol suppressed IL-33–induced IL-6, IL-13, and TNF-α production in mouse bone marrow–derived mast cells (BMMCs), mouse fetal skin–derived mast cells, and human basophils. Resveratrol also attenuated cytokine expression induced by intranasal administration of IL-33 in mouse lung. IL-33–mediated cytokine production in mast cells requires activation of the NF-κB and MAPK p38–MAPK-activated protein kinase-2/3 (MK2/3)–PI3K/Akt pathway, and resveratrol clearly inhibited IL-33–induced activation of the MK2/3–PI3K/Akt pathway, but not the NF-κB pathway, without affecting p38 in BMMCs. Importantly, resveratrol inhibited the kinase activity of MK2, and an MK2/3 inhibitor recapitulated the suppressive effects of resveratrol. Resveratrol and an MK2/3 inhibitor also inhibited IgE-dependent degranulation and cytokine production in BMMCs, concomitant with suppression of the MK2/3–PI3K/Akt pathway. These findings indicate that resveratrol inhibits both IL-33/ST2–mediated and IgE-dependent mast cell activation principally by targeting the MK2/3–PI3K/Akt axis downstream of p38. Thus, resveratrol may have potential for the prevention and treatment of broad ranges of allergic diseases.


2004 ◽  
Vol 286 (2) ◽  
pp. C256-C263 ◽  
Author(s):  
Tatsuya Oka ◽  
Masatoshi Hori ◽  
Akane Tanaka ◽  
Hiroshi Matsuda ◽  
Hideaki Karaki ◽  
...  

In the mast cell signaling pathways, the binding of immunoglobulin E (IgE) to FcϵRI, its high-affinity receptor, is generally thought to be a passive step. In this study, we examined the effect of IgE alone, that is, without antigen stimulation, on the degranulation in mast cells. Monomeric IgE (500–5,000 ng/ml) alone increased cytosolic Ca2+ level ([Ca2+]i) and induced degranulation in rat basophilic leukemia (RBL)-2H3 mast cells. Monomeric IgE (5,000 ng/ml) alone also increased [Ca2+]i and induced degranulation in bone marrow-derived mast cells. Interestingly, monomeric IgE (5–50 ng/ml) alone, in concentrations too low to induce degranulation, increased filamentous actin content in RBL-2H3 mast cells. We next examined whether actin dynamics affect the IgE alone-induced RBL-2H3 mast cell activation pathways. Cytochalasin D inhibited the ability of IgE alone (50 ng/ml) to induce de novo actin assembly. In cytochalasin D-treated cells, IgE (50 ng/ml) alone increased [Ca2+]i and induced degranulation. We have summarized the current findings into two points. First, IgE alone increases [Ca2+]i and induces degranulation in mast cells. Second, IgE, at concentrations too low to increase either [Ca2+]i or degranulation, significantly induces actin assembly, which serves as a negative feedback control in the mast cell Ca2+ signaling and degranulation.


Blood ◽  
2013 ◽  
Vol 121 (8) ◽  
pp. 1285-1295 ◽  
Author(s):  
Sophie Georgin-Lavialle ◽  
Ludovic Lhermitte ◽  
Patrice Dubreuil ◽  
Marie-Olivia Chandesris ◽  
Olivier Hermine ◽  
...  

Abstract Mast cell leukemia (MCL) is a very rare form of aggressive systemic mastocytosis accounting for < 1% of all mastocytosis. It may appear de novo or secondary to previous mastocytosis and shares more clinicopathologic aspects with systemic mastocytosis than with acute myeloid leukemia. Symptoms of mast cell activation—involvement of the liver, spleen, peritoneum, bones, and marrow—are frequent. Diagnosis is based on the presence of ≥ 20% atypical mast cells in the marrow or ≥ 10% in the blood; however, an aleukemic variant is frequently encountered in which the number of circulating mast cells is < 10%. The common phenotypic features of pathologic mast cells encountered in most forms of mastocytosis are unreliable in MCL. Unexpectedly, non-KIT D816V mutations are frequent and therefore, complete gene sequencing is necessary. Therapy usually fails and the median survival time is < 6 months. The role of combination therapies and bone marrow transplantation needs further investigation.


2014 ◽  
Vol 211 (13) ◽  
pp. 2635-2649 ◽  
Author(s):  
Di Wang ◽  
Mingzhu Zheng ◽  
Yuanjun Qiu ◽  
Chuansheng Guo ◽  
Jian Ji ◽  
...  

Antigen-mediated cross-linking of IgE on mast cells triggers a signaling cascade that results in their degranulation and proinflammatory cytokine production, which are key effectors in allergic reactions. We show that the activation of mast cells is negatively regulated by the newly identified adaptor protein Tespa1. Loss of Tespa1 in mouse mast cells led to hyper-responsiveness to stimulation via FcεRI. Mice lacking Tespa1 also displayed increased sensitivity to IgE-mediated allergic responses. The dysregulated signaling in KO mast cells was associated with increased activation of Grb2-PLC-γ1-SLP-76 signaling within the LAT1 (linker for activation of T cells family, member 1) signalosome versus the LAT2 signalosome. Collectively, these findings show that Tespa1 orchestrates mast cell activation by tuning the balance of LAT1 and LAT2 signalosome assembly.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 196 ◽  
Author(s):  
Hwan Soo Kim ◽  
Yu Kawakami ◽  
Kazumi Kasakura ◽  
Toshiaki Kawakami

Mast cells are innate immune cells that intersect with the adaptive immunity and play a crucial role in the initiation of allergic reactions and the host defense against certain parasites and venoms. When activated in an allergen- and immunoglobulin E (IgE)-dependent manner, these cells secrete a large variety of allergenic mediators that are pre-stored in secretory granules or de novo–synthesized. Traditionally, studies have predominantly focused on understanding this mechanism of mast cell activation and regulation. Along this line of study, recent studies have shed light on what structural features are required for allergens and how IgE, particularly anaphylactic IgE, is produced. However, the last few years have seen a flurry of new studies on IgE-independent mast cell activation, particularly via Mrgprb2 (mouse) and MRGPRX2 (human). These studies have greatly advanced our understanding of how mast cells exert non-histaminergic itch, pain, and drug-induced pseudoallergy by interacting with sensory neurons. Recent studies have also characterized mast cell activation and regulation by interleukin-33 (IL-33) and other cytokines and by non-coding RNAs. These newly identified mechanisms for mast cell activation and regulation will further stimulate the allergy/immunology community to develop novel therapeutic strategies for treatment of allergic and non-allergic diseases.


Blood ◽  
2012 ◽  
Vol 119 (14) ◽  
pp. 3306-3314 ◽  
Author(s):  
Jinwook Shin ◽  
Hongjie Pan ◽  
Xiao-Ping Zhong

Abstract Mast cells play critical roles in allergic disorders and asthma. The importance of tuberous sclerosis complex 1/2-mammalian target of rapamycin (TSC1/2-mTOR) signaling in mast cells is unknown. Here, we report that TSC1 is a critical regulator for mTOR signaling in mast cells downstream of FcεRI and c-Kit, and differentially controls mast cell degranulation and cytokine production. TSC1-deficiency results in impaired mast cell degranulation, but enhanced cytokine production in vitro and in vivo after FcεRI engagement. Furthermore, TSC1 is critical for mast cell survival through multiple pathways of apoptosis including the down-regulation of p53, miR-34a, reactive oxygen species, and the up-regulation of Bcl-2. Together, these findings reveal that TSC1 is a critical regulator of mast cell activation and survival, suggesting the manipulation of the TSC1/2-mTOR pathway as a therapeutic strategy for mast cell-mediated diseases.


2020 ◽  
Vol 21 (7) ◽  
pp. 2472 ◽  
Author(s):  
Ryota Uchida ◽  
Michiko Kato ◽  
Yuka Hattori ◽  
Hiroko Kikuchi ◽  
Emi Watanabe ◽  
...  

Jabara (Citrus jabara Hort. ex Y. Tanaka) is a type of citrus fruit known for its beneficial effect against seasonal allergies. Jabara is rich in the antioxidant narirutin whose anti-allergy effect has been demonstrated. One of the disadvantages in consuming Jabara is its bitter flavor. Therefore, we fermented the fruit to reduce the bitterness and make Jabara easy to consume. Here, we examined whether fermentation alters the anti-allergic property of Jabara. Suppression of degranulation and cytokine production was observed in mast cells treated with fermented Jabara and the effect was dependent on the length of fermentation. We also showed that 5-hydroxymethylfurfural (5-HMF) increases as fermentation progresses and was identified as an active component of fermented Jabara, which inhibited mast cell degranulation. Mast cells treated with 5-HMF also exhibited reduced degranulation and cytokine production. In addition, we showed that the expression levels of phospho-PLCγ1 and phospho-ERK1/2 were markedly reduced upon FcεRI stimulation. These results indicate that 5-HMF is one of the active components of fermented Jabara that is involved in the inhibition of mast cell activation.


2009 ◽  
Vol 206 (6) ◽  
pp. 1351-1364 ◽  
Author(s):  
Keigo Nishida ◽  
Aiko Hasegawa ◽  
Susumu Nakae ◽  
Keisuke Oboki ◽  
Hirohisa Saito ◽  
...  

Zinc (Zn) is an essential nutrient and its deficiency causes immunodeficiency. However, it remains unknown how Zn homeostasis is regulated in mast cells and if Zn transporters are involved in allergic reactions. We show that Znt5/Slc30a5 is required for contact hypersensitivity and mast cell–mediated delayed-type allergic response but not for immediate passive cutaneous anaphylaxis. In mast cells from Znt5−/− mice, Fcε receptor I (FcεRI)–induced cytokine production was diminished, but degranulation was intact. Znt5 was involved in FcεRI-induced translocation of protein kinase C (PKC) to the plasma membrane and the nuclear translocation of nuclear factor κB. In addition, the Zn finger–like motif of PKC was required for its plasma membrane translocation and binding to diacylglycerol. Thus, Znt5 is selectively required for the mast cell–mediated delayed-type allergic response, and it is a novel player in mast cell activation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Viktor Bugajev ◽  
Ivana Halova ◽  
Livia Demkova ◽  
Sara Cernohouzova ◽  
Petra Vavrova ◽  
...  

The systemic anaphylactic reaction is a life-threatening allergic response initiated by activated mast cells. Sphingolipids are an essential player in the development and attenuation of this response. De novo synthesis of sphingolipids in mammalian cells is inhibited by the family of three ORMDL proteins (ORMDL1, 2, and 3). However, the cell and tissue-specific functions of ORMDL proteins in mast cell signaling are poorly understood. This study aimed to determine cross-talk of ORMDL2 and ORMDL3 proteins in IgE-mediated responses. To this end, we prepared mice with whole-body knockout (KO) of Ormdl2 and/or Ormdl3 genes and studied their role in mast cell-dependent activation events in vitro and in vivo. We found that the absence of ORMDL3 in bone marrow-derived mast cells (BMMCs) increased the levels of cellular sphingolipids. Such an increase was further raised by simultaneous ORMDL2 deficiency, which alone had no effect on sphingolipid levels. Cells with double ORMDL2 and ORMDL3 KO exhibited increased intracellular levels of sphingosine-1-phosphate (S1P). Furthermore, we found that concurrent ORMDL2 and ORMDL3 deficiency increased IκB-α phosphorylation, degranulation, and production of IL-4, IL-6, and TNF-α cytokines in antigen-activated mast cells. Interestingly, the chemotaxis towards antigen was increased in all mutant cell types analyzed. Experiments in vivo showed that passive cutaneous anaphylaxis (PCA), which is initiated by mast cell activation, was increased only in ORMDL2,3 double KO mice, supporting our in vitro observations with mast cells. On the other hand, ORMDL3 KO and ORMDL2,3 double KO mice showed faster recovery from passive systemic anaphylaxis, which could be mediated by increased levels of blood S1P presented in such mice. Our findings demonstrate that Ormdl2 deficiency potentiates the ORMDL3-dependent changes in mast cell signaling.


Sign in / Sign up

Export Citation Format

Share Document