scholarly journals Demand-adapted regulation of early hematopoiesis in infection and inflammation

Blood ◽  
2012 ◽  
Vol 119 (13) ◽  
pp. 2991-3002 ◽  
Author(s):  
Hitoshi Takizawa ◽  
Steffen Boettcher ◽  
Markus G. Manz

AbstractDuring systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. Although adaptive immune cells have high proliferative potential, innate immune cells are mostly postmitotic and need to be replenished from bone marrow (BM) hematopoietic stem and progenitor cells. We here review how early hematopoiesis has been shaped to deliver efficient responses to increased need. On the basis of most recent findings, we develop an integrated view of how cytokines, chemokines, as well as conserved pathogen structures, are sensed, leading to divisional activation, proliferation, differentiation, and migration of hematopoietic stem and progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. We also outline how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, and, how clinical benefit is and could be achieved by learning from nature.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-40-SCI-40
Author(s):  
Markus G. Manz

Abstract Abstract SCI-40 During systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. While adaptive immune cells have high proliferative potential, innate mature immune cells are mostly postmitotic and need to be replenished from bone marrow hematopoietic stem and progenitor cells. Indeed, severe clinical infection, particularly infections challenging the innate immune response, lead to an increase in hematopoietic differentiation and throughput in bone marrow, involving subsequent differentiation stages from hematopoietic stem cells, multipotent progenitors, as well as early-lineage and late-lineage restricted hematopoietic progenitors. A fundamental question is how the increased need is sensed and translated in enhanced production and how adequate levels of response are guided. Recent research has shed light on conserved intracellular and extracellular pathogen recognition receptors, such as Toll-like receptors, that are expressed on nonhematopoietic and hematopoietic effector cells and cause activation upon ligation. This activation results in production of hematopoietic growth, survival, activation, and migration factors operating at site on effector cells, but also at remote primary hematopoietic sites to increase production upon need. Recent research by several groups, including ours, surprisingly revealed that conserved pattern-recognition receptors are also expressed on hematopoietic stem and progenitor cells in bone marrow, implying a direct effect of systemically available ligands on these cellular populations. Indeed, it has been demonstrated that, for example, ligation of Toll-like receptor 4 by its cognate agonist lipopolysaccharide can lead to divisional activation, proliferation, lineage-directed differentiation, and migration of hematopoietic stem and lineage-restricted progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. The relative contribution of pathogen sensing by hematopoietic and diverse nonhematopoietic cells to appropriate hematopoietic responses, as well as the subcellular translation of the signals, is the focus of ongoing research. Also to be discussed will be how chronic infectious and inflammatory processes, which are frequently associated with aging, might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases as exhaustion or transformation. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Siddharth Krishnan ◽  
Kelly Wemyss ◽  
Ian E. Prise ◽  
Flora A. McClure ◽  
Conor O’Boyle ◽  
...  

Hematopoietic stem cells reside in the bone marrow, where they generate the effector cells that drive immune responses. However, in response to inflammation, some hematopoietic stem and progenitor cells (HSPCs) are recruited to tissue sites and undergo extramedullary hematopoiesis. Contrasting with this paradigm, here we show residence and differentiation of HSPCs in healthy gingiva, a key oral barrier in the absence of overt inflammation. We initially defined a population of gingiva monocytes that could be locally maintained; we subsequently identified not only monocyte progenitors but also diverse HSPCs within the gingiva that could give rise to multiple myeloid lineages. Gingiva HSPCs possessed similar differentiation potentials, reconstitution capabilities, and heterogeneity to bone marrow HSPCs. However, gingival HSPCs responded differently to inflammatory insults, responding to oral but not systemic inflammation. Combined, we highlight a novel pathway of myeloid cell development at a healthy barrier, defining a gingiva-specific HSPC network that supports generation of a proportion of the innate immune cells that police this barrier.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jennifer L. Granick ◽  
Scott I. Simon ◽  
Dori L. Borjesson

Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC). While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response.


2018 ◽  
Vol 27 (5) ◽  
pp. 754-764 ◽  
Author(s):  
Domenico Mattiucci ◽  
Giulia Maurizi ◽  
Pietro Leoni ◽  
Antonella Poloni

Hematopoietic stem and progenitor cells reside within the bone marrow (BM) microenvironment. By a well-balanced interplay between self-renewal and differentiation, they ensure a lifelong supply of mature blood cells. Physiologically, multiple different cell types contribute to the regulation of stem and progenitor cells in the BM microenvironment by cell-extrinsic and cell-intrinsic mechanisms. During the last decades, mesenchymal stromal cells (MSCs) have been identified as one of the main cellular components of the BM microenvironment holding an indispensable role for normal hematopoiesis. During aging, MSCs diminish their functional and regenerative capacities and in some cases encounter replicative senescence, promoting inflammation and cancer progression. It is now evident that alterations in specific stromal cells that comprise the BM microenvironment can contribute to hematologic malignancies, and there is growing interest regarding the contribution of MSCs to the pathogenesis of myelodysplastic syndromes (MDSs), a clonal hematological disorder, occurring mostly in the elderly, characterized by ineffective hematopoiesis and increased tendency to acute myeloid leukemia evolution. The pathogenesis of MDS has been associated with specific genetic and epigenetic events occurring both in hematopoietic stem cells (HSCs) and in the whole BM microenvironment with an aberrant cross talk between hematopoietic elements and stromal compartment. This review highlights the role of MSCs in MDS showing functional and molecular alterations such as altered cell-cycle regulation with impaired proliferative potential, dysregulated cytokine secretion, and an abnormal gene expression profile. Here, the current knowledge of impaired functional properties of both aged MSCs and MSCs in MDS have been described with a special focus on inflammation and senescence induced changes in the BM microenvironment. Furthermore, a better understanding of aberrant BM microenvironment could improve future potential therapies.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 81-81
Author(s):  
Silvana Di Giandomenico ◽  
Pouneh Kermani ◽  
Nicole Molle ◽  
Mia Yabut ◽  
Fabienne Brenet ◽  
...  

Abstract Background: Chronic anemia is a significant problem affecting over 3 million Americans annually. Therapies are restricted to transfusion and Erythropoietin Stimulating Agents (ESA). There is a need for new approaches to treat chronic anemia. Immature erythroid progenitors are thought to be continuously produced and then permitted to survive and mature if there is sufficient erythropoietin (Epo) available. This model is elegant in that oxygen sensing within the kidney triggers Epo production so anemia can increase Epo and promote erythroid output. However, during homeostasis this model suggests that considerable energy is used to produce unneeded erythroid progenitors. We searched for independent control and compartmentalization of erythropoiesis that could couple early hematopoiesis to terminal erythroid commitment and maturation. Methods: We previously found the proportion of bone marrow megakaryocytes (MKs) staining for active, signaling-competent TGFβ transiently increases during bone marrow regeneration after chemotherapy. To assess the functional role of Mk-TGFβ, we crossed murine strains harboring a floxed allele of TGFβ1 (TGFβ1Flox/Flox) littermate with a Mk-specific Cre deleter to generate mice with Mk-specific deletion of TGFβ1 (TGFβ1ΔMk/ΔMk). We analyzed hematopoiesis of these mice using high-dimensional flow cytometry, confocal immunofluorescent microscopy and in vitro and in vivo assays of hematopoietic function (Colony forming assays, and in vivo transplantation). Results: Using validated, 9-color flow cytometry panels capable of quantifying hematopoietic stem cells (HSCs) and six other hematopoietic progenitor populations, we found that Mk-specific deletion of TGFβ1 leads to expansion of immature hematopoietic stem and progenitor cells (HSPCs) (Fig1A&B). Functional assays confirmed a more than three-fold increase in hematopoietic stem cells (HSCs) capable of serially-transplanting syngeneic recipients in the bone marrow (BM) of TGFβ1ΔMk/ΔMk mice compared to their TGFβ1Flox/Flox littermates. Expansion was associated with less quiescent (Go) HSCs implicating Mk-TGFβ in the control of HSC cell cycle entry. Similarly, in vitro colony forming cell assays and in vivo spleen colony forming assays confirmed expansion of functional progenitor cells in TGFβ1ΔMk/ΔMk mice. These results place Mk-TGFβ as a critical regulator of the size of the pool of immature HSPCs. We found that the blood counts and total BM cellularity of TGFβ1ΔMk/ΔMk mice was normal despite the dramatic expansion of immature HSPCs. Using a combination of confocal immunofluorescence microscopy (cleaved caspase 3) (Fig1C) and flow cytometry (Annexin V and cleaved caspase 3) (Fig1D), we found ~10-fold greater apoptosis of mature precursor cells in TGFβ1ΔMk/ΔMk BM and spleens. Coincident with this, we found the number of Epo receptor (EpoR) expressing erythroid precursors to be dramatically increased. Indeed, apoptosis of erythroid precursors peaked as they transitioned from dual positive Kit+EpoR+ precursors to single positive cells expressing EpoR alone. Epo levels were normal in the serum of these mice. We reasoned that the excess, unneeded EpoR+ cells were not supported physiologic Epo levels but might respond to even small doses of exogenous Epo. Indeed, we found that the excess erythroid apoptosis could be rescued by administration of very low doses of Epo (Fig1E). Whereas TGFβ1Flox/Flox mice showed minimal reticulocytosis and no change in blood counts, TGFβ1ΔMk/ΔMk mice responded with exuberant reticulocytosis and raised RBC counts almost 10% within 6 days (Fig. 1F). Low dose Epo also rescued survival of Epo receptor positive erythroid precursors in the bone marrow, spleen and blood of TGFβ1ΔMk/ΔMk mice. TGFβ1ΔMk/ΔMk mice showed a similarly brisk and robust erythropoietic response during recovery from phenylhydrazine-induced hemolysis (Fig.1G). Exogenous TGFβ worsened BM apoptosis and caused anemia in treated mice. Pre-treatment of wild-type mice with a TGFβ signaling inhibitor sensitized mice to low dose Epo. Conclusion: These results place megakaryocytic TGFβ1 as a gate-keeper that restricts the pool of immature HSPCs and couples immature hematopoiesis to the production of mature effector cells. This work promises new therapies for chronic anemias by combining TGFβ inhibitors to increase the outflow of immature progenitors with ESAs to support erythroid maturation. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2916-2916
Author(s):  
Jimmy L. Zhao ◽  
Chao Ma ◽  
Ryan O'Connell ◽  
Arnav Mehta ◽  
Jun Wang ◽  
...  

Abstract Mammals respond to infection by rapid production of innate immune cells. Hematopoietic stem and progenitor cells (HSPCs) have the ability to respond to pathogens directly through toll-like receptors. However, how the pathogen sensing ability of HSPCs may contribute to immune cell output remains unknown. Using a novel single-cell proteomic platform and mouse genetic models, we have shown that in response to toll-like receptor stimulation, short-term HSCs and multipotent progenitor cells produce copious amounts of diverse cytokines through NF-κB signaling. Interestingly, the cytokine production ability of HSPCs trumps mature immune cells in both magnitude and breadth. Among cytokines produced by HSPCs, IL-6 is a particularly important regulator of myeloid differentiation and HSPC proliferation. This is especially important in mediating rapid early myeloid cell recovery during neutropenia after chemotherapy or HSC transplant. This study has uncovered an important property of HSPCs that enables them to convert danger signals into versatile cytokine signals for the regulation of stress-induced hematopoiesis. To translate these findings into human hematopoietic system, we have recently developed a human cytokine chip and our preliminary analysis suggests that purified human bone marrow HSCs also have the capacity to secrete cytokines. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4358-4358
Author(s):  
Lung-Ji Chang ◽  
Yin Liang ◽  
Lily Lien ◽  
Chun- Rong Tong ◽  
Lu-Jia Dong ◽  
...  

Abstract Similar to virus infections, fungal infections are commonly seen in immunosuppressed transplant patients and can be life-threatening. Invasive Aspergillosis and Candidiasis are principal fungal infections among hematopoietic stem cell transplant (HSCT) patients, but Aspergillosis and other molds are the leading cause of deaths by fungal infections in immunocompromised allogeneic HSCT patients. The most effective treatment for fungal infections is preemptive and empirical anti-fungal therapies using agents such as fluconazole and amphotericin B deoxycholate (AmB-D). However, the success rate of antifungal therapy is generally low (in the 30–40% range) and associated with high toxicity. Both diagnosis and treatment for fungal infections are expensive and often ineffective. While improved formulations of AmB-D, second-generation triazoles, and echinocandins may be tolerable, newer generations of anti-fungal agents are very expensive. In animal studies, it has been shown that Aspergillosis can be successfully treated using Aspergillus-specific cytotoxic T cells (CTLs). Therefore, it is conceivable that CTLs specific to fungal antigens are effective in controlling fungal infections in allogeneic HSCT patients. To explore anti-fungal immune cell therapy, we used two different approaches to generate fungus-specific immune cells: Trichoderma and Rhizopus fungal lysates as antigen source to pulse dendritic cells (DCs), and pooled antigenic peptides to pulse DCs. The antigen-primed DCs were then co-cultured with lymphocytes to generate antigen-specific immune effector cells. The ex vivo generated anti-fungal immune cells displayed antigen-specific effector functions as illustrated by intracellular IFN-γ and CD107a staining. Interestingly, the fungus-specific immune effector cells are mostly CD4 T cells for all three species of fungal antigens. In a pilot clinical study, patients were selected when diagnosed with invasive aspergillosis based on galactomannan and beta-glucan assays, radiographs, CT scans, and/or blood cultures, or after an extended unsuccessful anti-fungal treatment with non-tolerable organ toxicity. Early indications suggest that the infusion of anti-fungal immune cells is safe, with therapeutic efficacy based on objective clinical evidence and importantly, is cost-effective. Nevertheless, more effective diagnosis and surveillance tools are needed to document the effectiveness of our anti-fungal immune cell treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ping Wang ◽  
Jun Wang ◽  
Yi-hao Li ◽  
Lan Wang ◽  
Hong-cai Shang ◽  
...  

Background: Sepsis is life-threatening organ dysfunction associated with high risk of death. The immune response of sepsis is complex and varies over time. The immune cells are derived from hematopoietic stem and progenitor cells (HSPCs) which can respond to many infections. Our previous study found that sepsis causes HSPC dysregulation in mouse. But few studies have previously investigated the kinetics of HSPC and its contribution to immune system in sepsis patients.Purpose: We aimed to identify the kinetics of HSPCs and their contribution to immune system in sepsis patients.Methods: We enrolled eight sepsis patients and five healthy control subjects. Peripheral blood (PB) samples from each patient were collected three times: on the first, fourth, and seventh days, once from each healthy control subject. Peripheral blood mononuclear cells (PBMCs) were isolated by density centrifugation and stained with cocktails of antibodies. Populations of HSPCs and their subpopulation were analyzed by flow cytometry. Immune cells were characterized by flow cytometry and blood cell analysis. Correlations between HSPCs and immune cells were analyzed using the Pearson correlation test.Results: We found that the frequency of HSPCs (CD34+ cells and CD34+CD38+ cells) in sepsis patients on day 4 was significantly higher than that in the healthy controls. The most pronounced change in subpopulation analysis is the frequency of common myeloid progenitors (CMPs; CD34+CD38+CD135+CD45RA−). But no difference in the immunophenotypically defined hematopoietic stem cells (HSCs; CD34+CD38−CD90+CD45RA−) in sepsis patients was observed due to rare HSC numbers in PB. The number of PBMCs and lymphocytes are decreased, whereas the white blood cell (WBC) and neutrophil counts were increased in sepsis patients. Importantly, we found a negative correlation between CD34+ on day 1 and WBC and lymphocytes on day 4 from correlation analysis in sepsis patients.Conclusion: The present study demonstrated that the HSPC and its subpopulation in sepsis patients expanded. Importantly, the changes in HSPCs at early time points in sepsis patients have negative correlations with later immune cells. Our results may provide a novel diagnostic indicator and a new therapeutic approach.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3261-3261
Author(s):  
Daniel Enrique Morales-Mantilla ◽  
Bailee Nicole Kain ◽  
Duy Le ◽  
Anthony R Flores ◽  
Silke Paust ◽  
...  

Abstract Sepsis is a dysregulated inflammatory syndrome that accounts for as many as 20% of deaths worldwide. Elevated production of pro-inflammatory cytokines during sepsis, such as IL-1, IL-6, interferons (IFNs), and tumor necrosis factor contribute to the development of fever, vasodilation, and multiorgan failure. Novel therapies to treat sepsis are urgently needed. Hematopoietic stem and progenitor cells (HSPC) are responsible for the day-to-day production of blood and immune cells. Recent work from our group and others indicates that during emergency hematopoiesis, inflammatory signals including cytokines, chemokines, and pathogen-derived molecules direct HSPCs to differentiate into effector immune cells. While these signals are essential for a proper immune response, excessive signaling in HSPCs can be detrimental and lead to their depletion. Thus, the interactions between HSPCs and their inflammatory environment may play a deterministic role in immune responses and sepsis. We used a mouse model of Group A Streptococcus (GAS) infection to examine the role of HSPCs in pathogenic infection and sepsis. GAS is a common pathogen that can cause a plethora of diseases from mild skin infections to life-threatening necrotizing fasciitis. We infected mice with 10 6 cfu GAS by intramuscular injection, which typically results in sepsis and death within 7 days, and examined the impact of this infection on peripheral blood (PB) and bone marrow (BM) populations. In just 24 hrs after GAS infection, BM myeloid and HSPC populations are significantly depleted, with myeloid cells being heavily trafficked into circulation following increased levels of monocyte chemoattractant protein-1 (MCP-1). Lineage tracing experiments using KRT18-CreERT2:Rosa26-lox-STOP-lox-TdTomato demonstrated that endogenous HSPCs differentiate toward the myeloid lineage after GAS infection. Based on these data, we hypothesized that the inflammatory environment of GAS infection drives rapid HSPC differentiation resulting in a depletion that could be rescued by the infusion of new HSPCs. To test this hypothesis, we infused GAS-infected mice with 10 4 naïve HSPCs (1.7x10 7 cells per m 2) and evaluated pathogen load and overall survival. This number of HSPCs infused is very low in comparison to the current granulocyte therapies that use ~10 10 cells per m 2 cells per infusion. BM and PB analysis showed that HSPC infusion restored HSPC levels and significantly increased myeloid progenitors and circulating myeloid cells. Strikingly, HSPC infusion in GAS-infected mice significantly increased survival, with 50-75% of mice surviving as opposed to 0-10% of controls. Despite the restoration of hematopoietic populations, surprisingly, GAS-infected mice infused with HSPCs did not show a reduction in pathogen load. Given that HSPC infusion significantly increased survival without impacting pathogen clearance, we sought to determine whether infused HSPCs served an immunomodulatory role. Analysis of BM and PB did not show any changes in lymphocyte populations, suggesting that Tregs and Bregs were not strongly affected. However, BM and PB MDSC populations were severely depleted during GAS sepsis, and HSPC infusion led to a dramatic restoration of these MDSC populations. Interestingly and in accordance with MDSC numbers, the overall cytokine levels of GAS-infected mice are lower after HSPC infusion. Notably, serum levels of cytokines known to drive the symptoms of sepsis, like TNF, IL-12, MIP-1a, IL-6, and IL-1b were dampened in HSPC-rescued mice. In conclusion, while HSPC infusion did not reduce bacterial load, it conferred a significant survival advantage to GAS-infected mice. Our data showing restoration of MDSCs and lower cytokine levels after HSPC infusion suggest that HSPC infusion supports the development of immunomodulatory cells that can prevent sepsis-related hyperinflammation and death. Current work is directed at defining specific HSPC subpopulations that mediate this effect. Importantly, the rescue potential of such low numbers of infused HSPCs highlights the feasibility of this technique and its potential applications. Overall, the information gained in this project may contribute to a new therapeutic strategy to use HSPCs to fight bacterial infections and sepsis where granulocyte infusions have so far produced only mixed results. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. sci-43-sci-43
Author(s):  
Julien Bertrand ◽  
Albert Kim ◽  
Jennifer Cisson ◽  
David Stachura ◽  
David Traver

Abstract Shifting sites of blood cell production during development is common across widely divergent phyla. In zebrafish, like other vertebrates, hematopoietic development has been roughly divided into two waves, termed “primitive” and “definitive.” Primitive hematopoiesis rapidly generates erythrocytes and macrophages through monopotent precursors for immediate use in the developing embryo. Definitive hematopoiesis arises later and generates multipotent precursors, including hematopoietic stem cells (HSCs). We have recently performed the first prospective isolation and functional characterization of hematopoietic stem and progenitor cells in the zebrafish and shown that definitive hematopoiesis generates two distinct precursor types during embryogenesis. First to arise are erythromyeloid progenitors (EMPs) in the posterior blood island (PBI), cells that possess robust but transient proliferation potential but lack self-renewal and lymphoid differentiation capacities. Next to develop are HSCs in the aorta/gonad/mesonephros (AGM) region. Unlike EMPs, HSCs colonize the developing thymus to initiate T-lymphopoiesis and seed the pronephros, the site of adult hematopoiesis. In vivo fate mapping studies similarly demonstrate that EMPs possess only transient proliferative potential, with differentiated progeny remaining largely within caudal hematopoietic tissue. By contrast, fate mapping of CD41:eGFP+ cells residing in the AGM region demonstrate robust colonization of the pronephros and thymus. Using time-lapse microscopy, we have observed directly the behaviors of the first HSCs to arise in the embryo. AGM HSCs, marked by a CD41:eGFP or c-myb:eGFP transgene, enter circulation to seed the thymic anlage and migrate along the pronephric tubules to seed the pronephros. We are currently performing retrospective time-lapse analyses to determine where in the early embryo HSC and EMP precursors are born. These data will be informative in analyzing where instructive ligands are expressed, including the Delta genes that provide paracrine signals to cells expressing the Notch receptor. We have demonstrated that Notch signaling is necessary for the generation of HSCs but dispensable for EMP formation. We have utilized new and existing Notch reporter lines to determine more precisely where and when HSC precursors receive Notch signals. Together, these studies highlight the power of the zebrafish system in combining genetic approaches with the direct imaging of hematopoietic stem and progenitor cells in living embryos.


Sign in / Sign up

Export Citation Format

Share Document