scholarly journals Aberrant mural cell recruitment to lymphatic vessels and impaired lymphatic drainage in a murine model of pulmonary fibrosis

Blood ◽  
2012 ◽  
Vol 119 (24) ◽  
pp. 5931-5942 ◽  
Author(s):  
Anna-Katharina Meinecke ◽  
Nadine Nagy ◽  
Gabriela D'Amico Lago ◽  
Santina Kirmse ◽  
Ralph Klose ◽  
...  

Abstract Pulmonary fibrosis is a progressive disease with unknown etiology that is characterized by extensive remodeling of the lung parenchyma, ultimately resulting in respiratory failure. Lymphatic vessels have been implicated with the development of pulmonary fibrosis, but the role of the lymphatic vasculature in the pathogenesis of pulmonary fibrosis remains enigmatic. Here we show in a murine model of pulmonary fibrosis that lymphatic vessels exhibit ectopic mural coverage and that this occurs early during the disease. The abnormal lymphatic vascular patterning in fibrotic lungs was driven by expression of platelet-derived growth factor B (PDGF-B) in lymphatic endothelial cells and signaling through platelet-derived growth factor receptor (PDGFR)–β in associated mural cells. Because of impaired lymphatic drainage, aberrant mural cell coverage fostered the accumulation of fibrogenic molecules and the attraction of fibroblasts to the perilymphatic space. Pharmacologic inhibition of the PDGF-B/PDGFR-β signaling axis disrupted the association of mural cells and lymphatic vessels, improved lymphatic drainage of the lung, and prevented the attraction of fibroblasts to the perilymphatic space. Our results implicate aberrant mural cell recruitment to lymphatic vessels in the pathogenesis of pulmonary fibrosis and that the drainage capacity of pulmonary lymphatics is a critical mediator of fibroproliferative changes.

2014 ◽  
Vol 94 (6) ◽  
pp. 674-682 ◽  
Author(s):  
Yujuan Wang ◽  
Mones S Abu-Asab ◽  
Cheng-Rong Yu ◽  
Zhongshu Tang ◽  
Defen Shen ◽  
...  

2009 ◽  
Vol 297 (5) ◽  
pp. H1685-H1696 ◽  
Author(s):  
Mitsuho Onimaru ◽  
Yoshikazu Yonemitsu ◽  
Takaaki Fujii ◽  
Mitsugu Tanii ◽  
Toshiaki Nakano ◽  
...  

Emerging evidence indicates that the tight communication between vascular endothelial cells and mural cells using platelet-derived growth factor (PDGF)-BB is essential for capillary stabilization during the angiogenic process. However, little is known about the related regulator that determines PDGF-BB expression. Using murine models of therapeutic neovascularization, we here show that a typical lymphangiogenic factor, vascular endothelial growth factor (VEGF)-C, is an essential regulator determining PDGF-BB expression for vascular stabilization via a paracrine mode of action. The blockade of VEGF type 3 receptor (VEGFR3) using neutralizing antibody AFL-4 abrogated FGF-2-mediated limb salvage and blood flow recovery in severely ischemic hindlimb. Interestingly, inhibition of VEGFR3 activity not only diminished lymphangiogenesis, but induced marked dilatation of capillary vessels, showing mural cell dissociation. In these mice, VEGF-C and PDGF-B were upregulated in the later phase after induced ischemia, on day 7, when exogenous FGF-2 expression had already declined, and blockade of VEGFR3 or PDGF-BB activities diminished PDGF-B or VEGF-C expression, respectively. These results clearly indicate that VEGF-C is a critical mediator, not only for lymphangiogenesis, but also for capillary stabilization, the essential molecular mechanism of communication between endothelial cells and mural cells during neovascularization.


2012 ◽  
Vol 7 ◽  
Author(s):  
Sabina A. Antoniu

Idiopathic pulmonary fibrosis is a rare, life threatening disease characterized by an anarchic fibrogenesis, limited survival and few therapeutic options. Its pathogenesis is complex and involves the interaction among various pathways driven by proinflammatory/profibrogenetic mediators such as platelet -derived growth factor, vascular endothelial growth factor or basic fibroblast growth factor. Given their prominent pathogenic roles in this disease such growth factor might be suitable therapeutic targets.In fact, the existing preclinical and clinical data demonstrated that their therapeutic inhibition results in a delayed progression of the pulmonary fibrosis and in the improvement of the disease outcome. BIBF 1120 is a potent triple blocker of the receptors of these growth factors which is currently evaluated as a potential therapy in the idiopathic pulmonary fibrosis. This review discusses the existing data supporting its potential use in this disease.


2021 ◽  
Author(s):  
Di Peng ◽  
Koji Ando ◽  
Marleen Gloger ◽  
Renae Skoczylas ◽  
Naoki Mochizuki ◽  
...  

The migration of lymphatic endothelial cells (LECs) is key for the development of the complex and vast lymphatic vascular network that pervades most of the tissues in an organism. In zebrafish, arterial intersegmental vessels together with chemokines have been shown to promote lymphatic cell migration from the horizontal myoseptum (HM). Here we found that LECs departure from HM coincides with the emergence of mural cells around the intersegmental arteries, raising the possibility that arterial mural cells promote LEC migration. Our live imaging and cell ablation experiments revealed that LECs migrate slower and fail to establish the lymphatic vascular network in the absence of arterial mural cells. We determined that mural cells are a source for the C-X-C motif chemokine 12 (Cxcl12a and Cxcl12b) and vascular endothelial growth factor C (Vegfc). We showed that ERK, a downstream component of Vegfc-Vegfr3 singling cascade, is activated in migrating LECs and that both chemokine and growth factor signalling is required for the robust migration. Furthermore, Vegfc-Vegfr3 has a pro-survival role in LECs during the migration. Together, the identification of mural cells a source for signals that guide LEC migration and survival will be important in the future design for rebuilding lymphatic vessels in the disease contexts.


Sign in / Sign up

Export Citation Format

Share Document